求下列幂级数的和∑x^2n (2n 1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:10:29
求下列幂级数的和∑x^2n (2n 1)
求幂级数的和函数 ∑(n=1到∞)[n(n+1)/2]x^(n-1)

S=∑(n=1到∞)[n(n+1)/2]x^(n-1)积分得:F=∑(n=1到∞)[(n+1)/2]x^n再积分得:G=0.5∑(n=1到∞)x^(n+1)=0.5x^2/(1-x)求导得:F=0.5

求幂级数∑x^(2n)/(2n)!的和函数

considerTaylorexpansionofe^xe^x=1+x+x^2/2!+...+x^n/n!+.(1)e^(-x)=1-x+x^2/2!+..;...+(2)(1)+(2)e^(x)+e

求幂级数∑x^(2n)/(2n)!的和函数 坐等答复,

记y=f(x)=∑x^(2n)/(2n)!,y'=f'(x)=d(∑x^(2n)/(2n)!)/dx于是可构造出微分方程y-y''=x^(2n)/(2n)!但需注意:构造此微分方程需满足一定条件,之后

求幂级数 ∑(∞,n→0)(2n+1)x^n的收敛域及和函数.

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

求幂级数∑_(n=1)^∞?〖(2n-1)/n!x^n 〗的和函数

拆开算原式=∑(2/(n-1)!)*X^n-∑(x^n)/n!=2*x*e^x-(e^x-1)要用到公式∑n从0到无穷=e^x,注意一下n的下限是0即可题目是一故要减去n=0时的值1.

求幂级数∑[(2n+1)/n!]x^(2n)的和函数

输入符号需要时间,马上写来,等下.再答:级数∑(0,+∞)[1/n!]x^(2n+1)=x∑(0,+∞)[1/n!]x^(2n)=xe^(x^2)(|x|

求幂级数 ∑[(n^2) * x^(n-1)],其中,n从1到∞ 的收敛区间及和函数.

对里面这个求导即可得到所需的幂级数值,即∑[(n*x^n)'],然后里面的那个式子可以用错位相减法解决,答案为:x/[(1-x)^2].

求幂级数的和函数,幂级数为下列图片2n+1

http://hi.baidu.com/fjzntlb/album/item/08e69d355982b2b75364188831adcbef77099b22.html#

求幂级数的和函数,求幂级数∑(上是无穷大,下是n=1){[(-2)^n+3^n]/n}*(x-1)^n的收敛域,

本来拍了两张图片的,不过只能上传一张,额,解题方法是相同的,就是将这个级数分成两个,再分别求每个级数的收敛域,再取交集.(1/2,3/2]∩[2/3,3/2)=[2/3,3/2]这个是答案.纯手工打造

求幂级数∑(∞,n=1) [(-1)^n*x^(2n)/n]的和函数

使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²

求下列幂级数在其收敛区间内的和函数 (n=0~∞)∑(n^2+1)x^n/(n!×3^n)

将级数(n=0-∞)∑(n^2+1)x^n/(n!×3^n)分为两个级数(n=1-∞)∑n^2*(x/3)^n/n!和(n=0-∞)∑(x/3)^n/n!的和得形式,显然第二个级数是e^t的展开式的形

幂级数求和函数求幂级数∑[(n+1)/n!]x^n的和函数

鉴于没有悬赏,电脑也不是很好用,我只能告诉你方法了先对x积分一下,得到∑[1/n!]x^(n+1)这个的和大概是x*e^x吧,然后求导就行(n+1)/n!拆开后求和

求幂级数∑[(n-1)x^(2n-2)]/3^n的和函数(n从1到∞)

记  f(x)=∑(n=1~inf.)[(n-1)x^(2n-2)]/3^n =(1/3)∑(n=1~inf.)n[(x^2)/3]^(n-1)-(1/3)∑(n=1~inf.)[(x^2)/3]^(

求幂级数∑(n^2+1)*x^n/(n!*2^n)的收敛范围,并求其和函数

﹙﹣∞,﹢∞﹚[e^﹙x/2﹚]﹙1+x/2+x²/4﹚再问:n从1开始,是不是要减1

求幂级数 ∑(n=2,∝) [n(n-1)] x^n的和函数

应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|

求幂级数∞∑n=2 X∧(n-1) /n-1 的和函数

设和为s(x),则s'(x)=∞∑n=2x^(n-2)=∞∑n=0x^n=1/(1-x),积分得s(x)=-ln(1-x),收敛域为[-1,1).

求幂级数的和函数 ∞∑n=1 x^(2n-1)/(2n-1) |x|

通过逐项求导,就可求和了.