求下列幂级数的和∑x^2n (2n 1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:10:29
S=∑(n=1到∞)[n(n+1)/2]x^(n-1)积分得:F=∑(n=1到∞)[(n+1)/2]x^n再积分得:G=0.5∑(n=1到∞)x^(n+1)=0.5x^2/(1-x)求导得:F=0.5
considerTaylorexpansionofe^xe^x=1+x+x^2/2!+...+x^n/n!+.(1)e^(-x)=1-x+x^2/2!+..;...+(2)(1)+(2)e^(x)+e
记y=f(x)=∑x^(2n)/(2n)!,y'=f'(x)=d(∑x^(2n)/(2n)!)/dx于是可构造出微分方程y-y''=x^(2n)/(2n)!但需注意:构造此微分方程需满足一定条件,之后
∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(
拆开算原式=∑(2/(n-1)!)*X^n-∑(x^n)/n!=2*x*e^x-(e^x-1)要用到公式∑n从0到无穷=e^x,注意一下n的下限是0即可题目是一故要减去n=0时的值1.
输入符号需要时间,马上写来,等下.再答:级数∑(0,+∞)[1/n!]x^(2n+1)=x∑(0,+∞)[1/n!]x^(2n)=xe^(x^2)(|x|
对里面这个求导即可得到所需的幂级数值,即∑[(n*x^n)'],然后里面的那个式子可以用错位相减法解决,答案为:x/[(1-x)^2].
http://hi.baidu.com/fjzntlb/album/item/08e69d355982b2b75364188831adcbef77099b22.html#
本来拍了两张图片的,不过只能上传一张,额,解题方法是相同的,就是将这个级数分成两个,再分别求每个级数的收敛域,再取交集.(1/2,3/2]∩[2/3,3/2)=[2/3,3/2]这个是答案.纯手工打造
使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²
将级数(n=0-∞)∑(n^2+1)x^n/(n!×3^n)分为两个级数(n=1-∞)∑n^2*(x/3)^n/n!和(n=0-∞)∑(x/3)^n/n!的和得形式,显然第二个级数是e^t的展开式的形
鉴于没有悬赏,电脑也不是很好用,我只能告诉你方法了先对x积分一下,得到∑[1/n!]x^(n+1)这个的和大概是x*e^x吧,然后求导就行(n+1)/n!拆开后求和
记 f(x)=∑(n=1~inf.)[(n-1)x^(2n-2)]/3^n =(1/3)∑(n=1~inf.)n[(x^2)/3]^(n-1)-(1/3)∑(n=1~inf.)[(x^2)/3]^(
﹙﹣∞,﹢∞﹚[e^﹙x/2﹚]﹙1+x/2+x²/4﹚再问:n从1开始,是不是要减1
应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|
设和为s(x),则s'(x)=∞∑n=2x^(n-2)=∞∑n=0x^n=1/(1-x),积分得s(x)=-ln(1-x),收敛域为[-1,1).
通过逐项求导,就可求和了.