求三重积分1 1 x^2 y^2其中V为锥面x^2 y^2=z^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:18:00
直观上想象成这是一块铁,那两个圆柱筒围成的区域中,每一点的密度是xy,接下来就好做了.∫∫∫xydv=∫∫xy(∫dz)dxdy(此一步,是把这块铁分解成每个(x,y)处立着的铁线).其中∫dz是z从
{z=-√(x²+y²){z=-1-1=-√(x²+y²)x²+y²=1-->r=1切片法:∫∫∫zdV=∫(-1→0)zdz∫∫Dzdxd
首先你要知道这个积分区域是什么:2z=x^2+y^2,旋转抛物面,(x^2+y^2)^2=x^2-y^2柱面,Z=0,不用说.(x^2+y^2)^2=x^2-y^2在极坐标下是r^2=cos2θ,由对
具体见图片,不过由于积分区域是关于xoy面对称的,而(y^2+x^2)z是关于z来说是奇函数,所以这部分的积分不用算就等于0了.
oh,mygod,你看看高教第五版配套辅导教材,三重积分那一章的讲解,好像有这套例题
原来是极坐标变换啊,投影区域是矩形,还真有些难度的.同样用对称性∫∫∫ΩdV=4∫∫∫Ω₁dV=4∫(0→1)∫(0→1-x)∫(1/2)(x²+y²)→x²
因为,曲面z=x^2+y^2在柱坐标下的方程为z=ρ^2这题如果是计算积分值的话,正解如下:因为z=常数的平面与Ω截得区域的面积为πz所以∫∫∫zdxdydz=∫(0~4)z(πz)dz=(1/3)π
Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^
稍等再答:再答:降三重积分为二重积分最简单。
原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.
可能是你的哪里算漏了吧
立体体积可用三重积分表示,V=∫∫∫dxdydz,积分区域为z=6-x^2-y^2及z=√x^2十y^2所围成的立体,联立两曲面方程,解得z=2即两曲面的交接面.用截面法计算此三重积分,V=∫(0到2
原式=∫(0,4)dz∫∫(Dz)zdxdy=∫(0,4)zdz∫∫(Dz)dxdy=∫(0,4)z×πz^2dz=π∫(0,4)z^3dz=π×1/4×z^4|(0,4)=64π其中Dz:x^2+y
可能是哪里想不通吧~以✔10为上限的是投影法,以✔(2x)为上限的是切片法再问:懂了懂了,一时糊涂了,谢谢你!
原式=∫dθ∫dφ∫r²*r²sinφdr(作球面坐标变换)=2π∫sinφdφ∫r^4dr=2π[cos(0)-cos(π)]*a^5/5=4πa^5/5.
首先围成的是下边是一个抛物面体上部是球的部分,让z1=z2,则交界处的交线方程是x^2+y^2=4,且对应的z=2,因为dv=r^2sinadado(a为r与z轴夹角,o为在xoy面内投影与x轴夹角)
积分域关于x轴和y轴都对称,所以对x对y的积分都是0