求一曲线方程,这一曲线过原点,并且它在点(x,y)处的斜率等于2x y...
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:00:26
曲线上任意一点(x,y)处的切线斜率为x3,即dydx=x3对上述微分方程积分可得:y=∫dydxdx=∫x3dx=14x4+C,C为任意常数.因为曲线经过原点,所以,将原点坐标(0,0)代入上述方程
根据题意有:y'=x+y,y(0)=0即y'-y=x特征根为1,y1=ce^x设y*=ax+b,y*'=a,代入方程得:a-ax-b=x,得:-a=1,a-b=0故a=-1,b=-1,y*=-x-1故
设这个曲线为y=f(x),有f(0)=0(因过原点)且y'=2x+y,即y'-y=2x这是一个可以用公式法解的方程解得y=Ce^x+2x+2令x=0有0=C+2,所以C=-2所以曲线方程为y=-2e^
这种题目实际上是由它在点(x,y)处的切线斜率等于.求微分方程得到到曲线方程的一般解析式,而后代入(0,0)即可得到曲线方程.具体解题方法因题目不清无法解析
y'=2x-yy'+y=2x对应齐次方程的特征多项式为:r+1=0r=-1设特解为:y*=ax+b代入原方程后得:a=2b=-2故通解为:y=ce^(-x)+2x-2将y(0)=0代入得:c=2故曲线
依题意有dy/dx=2y/x所以dy/y=2dx/x∫dy/y=∫2dx/xln|y|=2ln|x|+lnCy=Cx²因为曲线过点(1,1/3)所以1/3=C*1²所以C=1/3所
切线的斜率等于2x在任一点(x、y)的切线的斜率等于2x,即导数是2x,则原函数是f(x)=x^2+C过原点,则有f(0)=0+C=0,C=0故函数是f(x)=x^2则y'=2x所以y=x²
理解题目说的意思曲线上任何一点的切线斜率即为曲线任何一点的导数dy/dx自原点到该切点的连线的斜率即为y/x具体以dy/dx=2y/x即dy/y=2dx/x两边积分Ln|y|=2Ln|x|+C即y=C
由题意,得y'=2x+yy(0)=0j解y‘=2x+yy’-y=2xy=e^∫dx[∫2xe^(-∫dx)dx+c]=e^x(-2xe^(-x)-2e^(-x)+c)代入x=0,y=0,得0=-2+c
设曲线为:y=f(x)并且f(0)=0(过原点)f'(x)=y'=2x+y(切线斜率等于该点的一阶导数)y'-y=2x(一阶线性微分方程)y=C*e^(-∫-1dx)+e^(-∫-1dx)*∫2x*e
设这个曲线为y=f(x),有f(0)=0(因过原点)且y'=2x+y,即y'-y=2x这是一个可以用公式法解的方程解得y=Ce^x+2x+2令x=0有0=C+2,所以C=-2所以曲线方程为y=-2e^
切线过原点,所以可设切线方程为y=kx对曲线y=lnx求导y'=1/x即曲线上任意一点(x0,y0)处满足y0=lnx0且通过该点的切线的斜率为k=1/x0因此有y0=lnx0k=1/x0y0=kx0
过曲线上任一点的斜率等于该点横坐标的倒数,即k=1/x那么原函数是f(x)=lnx+C(e,2)代入得:2=lne+CC=1即原曲线方程是f(x)=lnx+1
y'=3x-yy'+y=3x用e^x同时乘以两边e^xy'+e^xy=3xe^x(ye^x)'=3xe^x所以ye^x=∫3xe^x=3(xe^x-e^x)+Cy=3x-3+C/e^xx=0时y=0得
f'(x)=3x^2两边同时积分,得f(x)=x³+c.满足此条件的所有曲线方程;如果过原点,即x=0,f(0)=0所以0=0+cc=0即曲线为f(x)=x³.
设这曲线的方程为y=f(x),∵该曲线上任一点M(x,y)处的切线的斜率是y′=f′(x),此点与原点的连线的斜率是y/x.又它们互相垂直.∴y′y/x=-1.解此微分方程得y²+x&sup
MO斜率y/x,M处切线斜率-x/y∴dy/dx=-x/y2ydy=-2xdx两边同时积分y^2=-x^2+C过(1,1),1=-1+C,C=2∴曲线方程y^2=-x^2+2,即x^2+y^2=2
此点与原点联线的方程为y=x既然该曲线上任一点M(x,y)处的切线垂直于此点与原点联线,就是这条曲线的斜率恒为-1这样的曲线只有可能是一条直线所以这条直线的斜率为-1,过(1,1)即为y=-x+2
思路:(x,y)处的斜率等于2x+y,故y'=2x+y,利用常数变异法解得微分方程的通解为:y=Ce^x+2(x+1)曲线过原点,代入(0,0)得C=2,从而特解为y=2e^x+2(x+1)注:利用常
就是把该曲线求导,然后把曲线上的已知点的横坐标带入求出切线的斜率在求出切线的方程.你若还没有学导数的话那就用联立方程组的方法首先先设出过已知点的直线的方程,然后联立直线与曲线的方程(若是一些比较普通的