求Y=1 2sin(π 4-2 3x)的单调区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:37:53
分析:函数y=2sin(2x-π/4)的图象的对称轴的位置为取最值的地方,对称中心为函数值为0的地方.因为2x-π/4=kπ+π/2(k为整数)解得x=kπ/2+3π/8,所以函数y=2sin(2x-
y=Asin(ωx+ψ)周期为:T=2π/ωy=sin(x+1),ω=1,所以T=2π
函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+
∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π
y'=2xsin4x-x²cos4x·4所以dy=(2xsin4x-4x²cos4x)dxy=ln√4+t²=1/2ln(4+t²)y'=1/2·1/(4+t&
y=sin^4x+cos^4x=sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-1/2sin^2
y'sin(y/x)-y/x*sin(y/x)+1=0令y/x=u,则y'=u+xu'所以(u+xu')sinu-usinu+1=0xu'sinu+1=0-sinudu=dx/x两边积分:cosu=l
y=x*sin(lnx)y'=sin(lnx)+x*cos(lnx)*(lnx)'=sin(lnx)+x*cos(lnx)*1/x=sin(lnx)+cos(lnx)dy=[sin(lnx)+cos(
y'=(cos²x)'-(sin3^x)'=2cosx·(cosx)'-cos3^x·(3^x)'=2cosx·(-sinx)-cos3^x·(3^x·ln3)=-sin2x-ln3·cos
y=6(2x+3)^2y=(e^x^2)2x-2y=cos(π/2x+4)×((-2π/(2x+4)^2))希望我写得清楚
sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]sinx+siny+sinz-sin(x+y+z)=2sin[(x+y)/
y∈[1,3]当y=1时,sin(x+π/3)=-1,x+π/3=2kπ-π/2,x=kπ-5π/12,k∈Z当y=3时,sin(x+π/3)=1,x+π/3=2kπ+π/2,x=kπ+π/12,k∈
-2k=cos2x-cos2y=[2(cosx)^2-1]-[2(cosy)^2-1]=2[(cosx)^2-(cosy)^2]cos^2x-cos^2y=-k
sinx的减区间是(2kπ+π/2,2kπ+3π/2)所以这里2kπ+π/2
(1)当y=C时,sin[(x+C)/2]=sin[(x-C)/2]移项,和差化积有2cos{[(x+C)/2+(x-C)/2]/2}sin{[(x+C)/2-(x-C)/2]/2}=0,即cos(x
1、y=(cos^2x+sin^2x)^2-2cos^2xsin^2x=1-1/2(sin2x)^2=1-1/4(1-cos4x)=3/4+1/4cos4x周期T=2pi/4=pi/22、y=(根3/
y=(sinxcosπ/3-cosxsinπ/3)sinx=(1/2*sinx-√3/2*cosx)sinx=1/2*sin²x-√3/2*sinxcosx=1/2*(1-cos2x)/2-
原式=1-cos^2x+4cosx+1=-cos^x+4cosx+2令cosx=t t属于[-1,1]y=-t^2+4t+2 =-(t-2)^2+6对称轴t=2 &nbs
y=sinx增区间[2kπ-π/2,2kπ+π/2]所以本题,2kπ-π/2≤π/4+2x≤2kπ+π/2kπ-3π/8
任何正弦函数,只要系数是1,值域就是[-1,1]