求y=1 1-x与y=2sinπx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:22:45
分析:函数y=2sin(2x-π/4)的图象的对称轴的位置为取最值的地方,对称中心为函数值为0的地方.因为2x-π/4=kπ+π/2(k为整数)解得x=kπ/2+3π/8,所以函数y=2sin(2x-
函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+
∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π
sin^2(x-y)+sin^2(y-z)+sin^2(z-x)=[1-cos2(x-y)+1-cos2(y-z)+1-cos2(z-x)]/2=3/2-[(cos2xcos2y+sin2xsin2y
sin(x^2+y^2)=x两边同时求导,得(x^2+y^2)'cos(x^2+y^2)=dx(2xdx+2ydy)cos(x^2+y^2)=dx2xdx+2ydy=dx/cos(x^2+y^2)2y
y'=2xsin4x-x²cos4x·4所以dy=(2xsin4x-4x²cos4x)dxy=ln√4+t²=1/2ln(4+t²)y'=1/2·1/(4+t&
模型y=Asin(ωX+ψ)振幅A=4周期T=2π/ω=4π最大值=A=4最小值=-A=-4
x=sin(y/x)+e^2求dy/dxd(x)=d(sin(y/x)+e^2)dx=dsin(y/x)+de^2dx=cos(y/x)d(y/x)dx=cos(y/x)(xdy-ydx)/x^2x^
y'sin(y/x)-y/x*sin(y/x)+1=0令y/x=u,则y'=u+xu'所以(u+xu')sinu-usinu+1=0xu'sinu+1=0-sinudu=dx/x两边积分:cosu=l
y'=(cos²x)'-(sin3^x)'=2cosx·(cosx)'-cos3^x·(3^x)'=2cosx·(-sinx)-cos3^x·(3^x·ln3)=-sin2x-ln3·cos
用辅助角公式~sin的就不用管它外面就只有y再问:能不能写一下详细过程,谢谢再答:不好意思我竞赛没认真读一般一试的填空我都是用猜的我现在高三备高考而且三角的转化我不在行你可以去竞赛吧问问里面的人比较牛
dy=2sin[x(x+1)]cos[x(x+1)](2x+1)
y∈[1,3]当y=1时,sin(x+π/3)=-1,x+π/3=2kπ-π/2,x=kπ-5π/12,k∈Z当y=3时,sin(x+π/3)=1,x+π/3=2kπ+π/2,x=kπ+π/12,k∈
-2k=cos2x-cos2y=[2(cosx)^2-1]-[2(cosy)^2-1]=2[(cosx)^2-(cosy)^2]cos^2x-cos^2y=-k
Sinx-siny=2/3cosx-cosy=1/2分别平方得(Sinx-siny)^2=(2/3)^2(cosx-cosy)^2=(1/2)^2展开相加得-2cos(x-y)+2=4/9+1/4-2
(1)当y=C时,sin[(x+C)/2]=sin[(x-C)/2]移项,和差化积有2cos{[(x+C)/2+(x-C)/2]/2}sin{[(x+C)/2-(x-C)/2]/2}=0,即cos(x
y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积
dy/d(x^3)=(dy/dx)/(d(x^3)/dx)=cosx/3(x^2)
任何正弦函数,只要系数是1,值域就是[-1,1]