e的x y次方儿二重积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:53:44
对x求导为y*e^(xy)对y求导为x*e^(xy)对x,y求偏导为e^(xy)+xy*e^(xy)
两边同时微分.e^ydy-ydx-xdy=0.变下形.答案就出来了
z=e^y+xy-ez'|x=y'e^y+(y+xy')你做出的结果有一个问题,在于e^y是复合函数,所求求导的时候后面还有y对x的导数即:y‘.
dsiny+de^x-dxy²=0cosydy+e^xdx-y²dx-2xydy=0cosydy-2xydy=y²dx-e^xdxdy/dx=(y²-e^x)/
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
y=x与y=x^3在第一象限的交点为(1,1)该积分区域既是X-型的,又是Y-型的X-型:∫0到1∫x^3到x(e^x2)dydx=∫0到1(e^x2)(x-x^3)dx=1/2*[(2-x^2)*e
z=arctan(x*e^x)z'={1/[1+(x*e^x)^2]}*(x*e^x)'(x*e^x)'=x'*e^x+x*(e^x)'=e^x+x*e^x=(x+1)*e^x所以dz/dx=(x+1
隐函数求导,就是先左右一起求微分,加个d,然后写出多少dx+多少dy=0,移项变成dy/dx=多少的形式就好了
xy=e^x-e^yd(xy)=d(e^x-e^y)xdy+ydx=e^xdx-e^ydy(x+e^y)dy=(e^x-y)dx则由dy/dx=(e^x-y)/(e^y+x)
你分别算就行了,e的y次方求导,就是e的y次方乘以y的导数,再算xy,求导等于y+x和y的导数的乘积,最后把这两个结果夹在一起就行了再问:哦
dy/dx=(y^2-e^x)/(cosy-2xy)
(xy)'=(e^(x+y)'y+xy'=e^(x+y)*(1+y')y'=[e^(x+y)-y]/[1-e^(x+y)]
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
y'e^y+y+xy'=0y'=-y/(x+e^y)
对x求导y+x*y'=e^(x+y)*(1+y')y+x*y'=e^(x+y)+e^(x+y)*y'所以dy/dx=[e^(x+y)-y]/[x-e^(x+y)]
xy=e^x-e^y两边求导得:y+xy'=e^x-y'*e^y解得:y'=(e^x-y)/(e^y+x)
先把e^y看成一个整体Ae的xy次方即A^x求导即A^x*lnA=e^xy*lne^y=e^xy*y即y乘以e的xy次方