求sinx*cosx sinx4 cosx4的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:18:20
原式=(sin²x+sinxcosx)/(2sin²x+cos²x)1=sin²x+cos²x=(tan²x+tanx)/(2tan
设sinx为u因此∫√(sinx)dx=-1/(2√-cosx)d(sinx)+C=-cosx/(2√-cosx)+C
改写三角函数以便积分,给出两个方法如图.
方法1:直接调用sin()方法2:将sin展开成泰勒阶数并忽略高次项functiony=sin1(x)y=x-x.^3./(factorial(3))+x.^5./(factorial(5))-x.^
u=tan(x/2),dx=2du/(1+u²)sinx=2u/(1+u²),cosx=(1-u²)/(1+u²)∫dx/(sinx+cosx)=∫2/{(1+
原式=∫[(sinx+cosx)^2-1]/2(sinx+cosx)dx=(1/2)∫[(sinx+cosx)-1/(sinx+cosx)]dx=(1/2)∫(sinx+cosx)dx-(1/2)∫1
F(x)=x/sinx==>F’(x)=(sinx-xcosx)/(sinx)^2
∫arcsinx/×2DX=-∫arcsinxd(1/x)的=-(1/x)的*arcsinx+∫(1/X)D(arcsinx)=-arcsinx/X+∫(1/X)*[1/√(1-X2)]DXX=圣马丁
∫sinx/(1+sinx+cosx)dx=∫sinx(sinx+cosx-1)/[(sinx+cosx+1)(sinx+cosx-1)]dx=∫(sin^2x+sinxcosx-sinx)/[(si
依题它是趋向于0.又式子是0/0型,所以原式=(1-cosx)/(1+cosx)=(x²/2)/2=x/2=0再问:������再答:哪里看不懂再问:�ǵ�1-cosx���Dz�再答:x趋于
原函数不是初等函数.不是所有初等函数原函数都是初等函数,因此这个函数不定积分不能用基本初等函数的有限次复合和四则运算表示.但是,你要求它在某个区间上的积分却有一些巧妙的方法.
再问:不过少了个C再问:谢谢你啦
∫sinx/(1+sinx)dx=∫(sinx+1-1)/(1+sinx)dx=∫1dx-∫1/(1+sinx)dx后一个积分的分子分母同除以cosx=x-∫secx/(secx+tanx)dx=x-
这个数分书上有原题呢,就是你把他等价,用用那个积分u'v=uv-积分uv',最后积分这边出来一样的,移项,完了就解出来了
答:∫(e^sinx)sinxcosxdx=∫(e^sinx)sinxd(sinx)=∫sinxd(e^sinx)=(e^sinx)sinx-∫e^sinxd(sinx)利用分部积分法=(e^sinx
令∫sinx/(sinx+cosx)dx=B令∫(cosx/(sinx+cosx))dx=A则A+B=∫dx=x+CA-B=∫((cosx-sinx)/(sinx+cosx))dx=∫1/(sinx+
先看区间[0,2π]的情况:sinx