求3x 2y的二重积分,其中D是由两坐标轴及直线x y=2所围成的闭区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:37:42
求3x 2y的二重积分,其中D是由两坐标轴及直线x y=2所围成的闭区间
求f(x,y)=xcos(x+y)的二重积分 其中D是直线y=2x x=2y x+y=3所围成的三角形区域

用直线x=1将区域分成D1与D2两部分,然后分别积分即可(如图)最后计算需要用分部积分法求出原函数,然后用微积分基本定理即牛顿-莱布尼茨公式求解

求二重积分ff下标D (1-x^2-y^2)的绝对值dxdy,其中D是由y=0,y=X,和x^2+y^2=1在第一象限围

注意到积分区域,1-x^2-y^2大于等于零. 利用极坐标可得 再问:我不知道你怎么想的啊,说明白点撒。再答:积分区域内,1-x^2-y^2大于等于零。所以绝对值没有用。还是...

利用二重积分的几何意义求∫∫dxdy= ,其中D:X²+Y²≤2X

被积函数f(x,y)呢?如果认定被积函数f(x,y)=1,那么二重积分所表示的几何意义就是:以圆(x-1)²+y²=1为底,高度为1的圆柱体的体积.因为积分区域D:x²+

求e^(x+y)的二重积分,其中D是闭区域|x|+|y|

对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y)  上下实

求二重积分∫∫xsin(y/x)dxdy,其中D是由y=x,x=1,y=0所围成的闭区域

I=∫∫xsin(y/x)dxdy=∫x^2dx∫sin(y/x)d(y/x)=(1-cos1)∫x^2dx=(1-cos1)/3.再问:这个公式我们没学过阿,只学过x型或者y型的,或者极坐标下的。我

二重积分的题∫∫(R^2-x²-y²)dxdy=(2/3)π ,D的范围是x^2+y^20求R答案是

用极坐标的方法来求:∫∫(R^2-x²-y²)dxdy=∫(-π)(π)dθ∫0(R){(R^2-p^2)p}dp==∫(-π)(π){[R^2p^2/2-p^4/4]0(R)}d

当x=-1,y=1时求代数式2x2y-(5xy2-3x2y)-x2的值

代入x=-1,y=1,2x^y-(5xy^-3x^y)-x^=2*(-1)^*1-{5*(-1)*1^-3*(-1)^*1}-(-1)^=2-(-5-3)-1=9备注:2^表示2的平方

二重积分求∫∫[y/(1+x^2+y^2)^(3/2)]dxdy 其中 D:0

化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2

求二重积分∫∫x²ydxdy.其中D为y=x,y=0,x=1围成的区域.答案是1/6.

二重积分∫(0)(1)x²∫(0)(x)ydydx=∫(0)(1)x²*1/2(x²-0)dx=1/2∫(0)(1)x^4dx=1/2*1/5*x^5l(0)(1)=1/

求二重积分:∫∫((根号x)+y)dxdy,其中D是由y=x,y=4x,x=1所围成的平面区域

∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2

计算二重积分:∫∫x(根号下y)dσ,其中D是由两条抛物线y=根号下x及y=x2所围成的闭区域!求过程!

{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)

微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域

令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限

二重积分的计算 题目是求∫∫(e的y/x次方)dxdy 其中D是由曲线y=x^2直线y=x以及x=1/2围成的区域

∫∫(e^(y/x)dxdy=∫[0,1/2]dx∫[x^2,x](e^(y/x)dy=∫[0,1/2]dx{(xe^(y/x)|[x^2,x]}=∫[0,1/2](xe-xe^x)dx=ex^2/2

求e^y^2的二重积分,其中D是第一象限内由直线y=x,和曲线y=x^(1/3)围成的闭区域

交点为(0,0)和(1,1).先对x积分后对y积分,积分区域是0