e^z的模
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:54:10
复变函数的图像要在4维空间里画.目前没有一个好的直观表示复变函数图像的办法
(1)e^(z/(z-1))无法给出通式1.e^(z/(z-1))=e^(1+1/(z-1))可以按照泰勒展开令[e^(1+1/(z-1))](n)'代表n次导数那么[e^(1+1/(z-1))](1
Zelda(塞尔达/泽尔达传奇的泽尔达,(Griselda)的昵称)Zelma(塞尔玛(Selma)的另一种写法)
(太麻烦拉,给点分啊!)设v=x*x-y*y,u=exp{xy}那么dv/dx=2x(这里应该用偏导符号,代替一下),dv/dy=2y,du/dx=y*exp{xy},du/dy=x*exp{xy}那
你好:E,I,X,Y,Z开头的都没有,其他的有一些供你参考:pear梨peach桃pineapple凤梨peanut花生grape葡萄gingko白果,银杏greengage青梅watermelon西
e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
虚数z满足|z|=1,z²+2z+1/z
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
e^z/(z^2*(2z+1))在|x+1|=2上有两个奇点,分别是z=0,二级奇点,和z=-1/2,一级奇点.则res(f(0))=(e^z/(2z+1))的导数再取z=0,即-1,同理z=-1/2
对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)
对X的偏导=yz/(e^z-xy)对Y的偏导=xz/(e^z-xy)
Taylor展开需要看不连续点的.1/z是在z=0处展开,而1/1-z是在z=1处,不能直接带再问:那关于ln(1+x)我用e^x代替x似乎也不行
高鸿宾《有机化学》第四版有详解,自己看吧
由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx
首先找出f(z)的奇点,为z=±1且都是一介极点那么无穷远点的留数就等于这两点的留数和的相反数,z=-1点的留数,根据定理得到{(e^z)/(z-1)|[z=-1]}=(-1/2)e^(-1)z=1点
e^((z-1)/z)=e^(1-1/z)=e*e^(-1/z)z=a+bi代入上式整理得e^(1-a/(a^2+b^2))*e^(ib/(a^2+b^2))这是复数的ρe^iθ形式转换为ρcosθ+
(1)e^(z/(z-1))无法给出通式1.e^(z/(z-1))=e^(1+1/(z-1))可以按照泰勒展开令[e^(1+1/(z-1))](n)'代表n次导数那么[e^(1+1/(z-1))](1
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).