e^y-xy-e^x的隐函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:46:43
隐函数求导,两边同时求导,此题是对X求导!两边同时求导:y+xy'=e^x-y'y'=(e^x-y)/(x+1)由XY=e^X-y解出yy=e^x/x+1,带入上式y'=(e^x-y)/(x+1)=[
方程两边对x求导:e^y×y'=y+xy'得y'=y/(e^y-x)
xy=e^x+yxy'+y=e^x+y'y'(1-x)=y-e^xy'=(y-e^x)/(1-x)
x=0则e+0=1+yy=e-1de(x+1)+d(xy)=de^x+dyedx+xdy+ydx=e^xdx+dy所以dy/dx=(e+y-e^x)/(1-x)所以原式=(e+e-1-1)/(1-0)
两边同时对X求导y+xy`=e^x+y`y`=(e^x-y)/(x-1)
这个题目要用到微分的形式不变性e^y*dy+d(xy)=0e^y*dy+xdy+ydx=0-ydx=(x+e^y)dydy=-y*dx/(x+e^y)
xy=e^(x+y)两边对x求导得y+xy'=e^(x+y)(1+y')y-e^(x+y)=[e^(x+y)-x]y'y'=[y-e^(x+y)]/[e^(x+y)-x]
先对X求导y+xy'-e^x+e^yy'=0y'=(e^x-y)/(x+e^y)再问:主要是e^y我不懂,答案是对的,老师。还有y'=0是为什么?
∵e^y+xy-e=0∴d(e^y+xy-e)/dx=0==>d(e^y)/dx+d(xy)/dx+d(-e)/dx=0==>e^y*dy/dx+y*dx/dx+x*dy/dx+0=0==>e^y*d
构造函数,F(X,Y)=xy-e^(xy)则dy/dx=-Fx/Fy=-[y-e(xy)*y]/[x-e^(xy)*x]
xy=e^x-e^yd(xy)=d(e^x-e^y)xdy+ydx=e^xdx-e^ydy(x+e^y)dy=(e^x-y)dx则由dy/dx=(e^x-y)/(e^y+x)
边对x求导有y+xy'=e^(x+y)*(1+y')解得dy/dx=y'=(e^(x+y)-y)/(x-e^(x+y))
两边分别求x的导数得:e^x+(y+xy')=0,即y'=-(e^x+y)/x,即:dy/dx=-(e^x+y)/x
就是方程两边的每一项都对x进行求导,这里要将y看成是复合函数,y=y(x)比如x对x求导,则为1对y求导,则为y'对xy求导,应用求导运算法则,为y+xy'
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
所谓隐函数、只是说它的解析式其本质也是Y是X的函数,X为自变量第一道题中的y+x(dy/dx)都是xy对x求导的结果这是两个函数相乘求导(uv)'=u'v+uv'而e导数就为0第二道题也是一样-2y+
两边对x求导得e^y*dy/dx+y+xdy/dx=0解得dy/dx=-y/(e^y+x)再两边对x求导,左边是所求右边会出现y的一阶导数把上式带入就得到结果了
xy=e^x-e^y两边求导得:y+xy'=e^x-y'*e^y解得:y'=(e^x-y)/(e^y+x)
先对X求导y+xy'-e^x+e^yy'=0y'=(e^x-y)/(x+e^y)
e^(x+y)=xy两边对x求导:e^(x+y)*(1+y')=y+xy'解得:y'=[y-e^(x+y)]/(e^(x+y)-x]=(y-xy)/(xy-x)