e^x cosx e^2x积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:00:33
令e^x=u,则du=de^x=e^xdx=udx,有du/u=dx所以原式=∫du/u(1+u)²=∫du/u-∫du/(u+1)²-∫du/(u+1)=lnu+1/(u+1)-
我想LZ的意思是求不定积分:∫(e^x)/(1+e^2x)dx=∫1/(1+e^2x)d(e^x)然后用第二类换元法,令e^x=tant,则t=arctan(e^x)代入可得:∫1/(1+e^2x)d
=(1/2)∫(0,1)e^x²dx²=(1/2)e^x²|(0,1)=(1/2)×(e-1)=(e-1)/2
可以通过一维正态分布的公式来推出积分的值
将被积函数分子,分母同乘以e^x得:被积函数=e^x/(e^2x+1)=d(e^x)/e^2x+1,令u=e^x,则原式=∫du/(u^2+1)(u>0)=∫[d(tanA)]/[1+(tanA)^2
1/2*x^2*e^(x^2)-1/2*e^(x^2)
令t=e^x,则dt=e^x*dx=tdxdx/[e^x+e^(2-x)]=dx/[t+(e^2/t)]=tdx/(t^2+e^2)=dt/(t^2+e^2)令t/e=u,t=eu,则dt=edu,d
答案(x^4)/4再问:详细步骤呢再答:看错题了,你题目没打错吧再问:再答:Y=∫(-1,1)x^2/[1+e^(-x)]dx(-1,1)为积分上下限为-1到1令t=-x则Y=∫(1,-1)t^2/(
假设a=∫e^(-x)sin(2x)dx=-∫sin(2x)de^(-x)=-[sin(2x)e^(-x)-2∫e^(-x)cos(2x)dx]b=∫e^(-x)cos(2x)dx=-∫cos(2x)
1-e^2x=(1+e^x)(1-e^x)于是变成求1+e^x的积分,等于x+e^x+C
你算错了~答案是对滴
对类似e^x/x,e^x²,sinx/x等等函数的不定积分,是不能用初等函数来表示的,所以得不到这个式子的不定积分,如果需要,就用级数展开了之后再积分得到近似表达式
答:非常复杂...∫x^2e(x^2)dx=(1/2)∫xe^(x^2)dx^2=(1/2)∫xd(e^x^2)=(1/2)xe^(x^2)-(1/2)∫e^x^2d(x^2)^(1/2)=(1/2)
I=∫xe^(-x^2)dx=1/2∫e^(-x^2)dx^2(t替换x^2)=1/2∫e^(-t)dt=-1/2e^(-t)(x^2替换t)=-1/2e^(-x^2)希望采纳
原式=∫x²d(e^x)=x²e^x-∫e^xd(x²)=x²e^x-2∫xe^xdx=x²e^x-2(x-1)e^x+c
好像有个分部积分法是这样的:∫f(x)dg(x)=f(x).g(x)-∫g(x)df(x)根据这个公式有∫e^(x^2)dx=x*e^(x^2)-∫xd(e^(x^2))=x*e^(x^2)-∫xd(
de^x=e^xdxdx/1-e^x=1/e^x-e^2xde^x=1/t-t^2dt(其中t=e^x)=(1/t+1/1-t)dt=d(lnt-ln1-t)固dx/1-e^x=d(lne^x-ln(
原式=-∫xe^(-2x)d(-2x)=-∫xde^(-2x)=-xe^(-2x)+∫e^(-2x)dx=-xe^(-2x)-(1/2)∫e^(-2x)d(-2x)=-xe^(-2x)-(1/2)e^
∫01(2x+e^x)dx=(x方+e^x)|(0,1)=(1+e)-(0+1)=e
这个函数的不定积分不是初等函数来的,我用MATLAB试了一下symsxyy=exp(x^2);f=int(y,x)得到f=-(pi^(1/2)*i*erf(i*x))/2后面的erf就是一个内部函数.