e^-y²二重积分,其中D是由x=0,y=1,y=x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:58:10
e^-y²二重积分,其中D是由x=0,y=1,y=x
计算二重积分∫∫D dxdy/根号4-x²-y² 其中D是由圆周x²+y²=4围

原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.

求e^(x+y)的二重积分,其中D是闭区域|x|+|y|

对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y)  上下实

计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域

{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x

求二重积分∫∫xsin(y/x)dxdy,其中D是由y=x,x=1,y=0所围成的闭区域

I=∫∫xsin(y/x)dxdy=∫x^2dx∫sin(y/x)d(y/x)=(1-cos1)∫x^2dx=(1-cos1)/3.再问:这个公式我们没学过阿,只学过x型或者y型的,或者极坐标下的。我

计算二重积分xy^2dxdy,其中D是由圆周x^2+y^2=4及y轴所围成的右半闭区间.

∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

计算二重积分∫∫e^(x+y)dxdy,其中区域D是由X=0,x=1,y=0,y=1所围成的矩形 (D在∫∫下面,打不出

∫∫e^(x+y)dxdy=∫[∫e^(x+y)dx]dy∫e^(x+y)dx(0~1)↑↑=e^(x+y)|0~10~10~1=e^(1+y)-e^y=(e-1)e^y=∫(e-1)e^ydy(0~

求二重积分:∫∫((根号x)+y)dxdy,其中D是由y=x,y=4x,x=1所围成的平面区域

∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2

微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域

令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限

计算二重积分∫∫xydσ其中D是由直线x=0、y=0及x+y=1所围成的闭区域.

我来试试吧.∫∫xydσ=∫(0到1)dx∫(0到1-x)xydy=∫(0到1)xdx∫(0到1-x)ydy=∫(0到1)x[1/2y²]((0到1-x)dx=∫(0到1)1/2x(x-1)

二重积分的计算 题目是求∫∫(e的y/x次方)dxdy 其中D是由曲线y=x^2直线y=x以及x=1/2围成的区域

∫∫(e^(y/x)dxdy=∫[0,1/2]dx∫[x^2,x](e^(y/x)dy=∫[0,1/2]dx{(xe^(y/x)|[x^2,x]}=∫[0,1/2](xe-xe^x)dx=ex^2/2

求e^y^2的二重积分,其中D是第一象限内由直线y=x,和曲线y=x^(1/3)围成的闭区域

交点为(0,0)和(1,1).先对x积分后对y积分,积分区域是0

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x

高等数学二重积分题∫∫e的x^2+y^2次方dδ,其中D是由圆周x^2+y^2=4所围成的闭区域,∫∫下有个D传图片!看

用极坐标∫∫e^(x^2+y^2)dδ=∫(0~2π)dθ∫(0~2)e^(ρ^2)ρdρ=2π∫(0~2)e^(ρ^2)ρdρ被积函数的原函数是1/2×e^(ρ^2),所以结果是π(e^4-1)

计算二重积分∫∫D(sinx/x)dxdy,其中D是由0≤x≤1,0≤y≤x所围成的闭区域

∫(从0到1)dx∫(从0到x)sinx/xdy=∫(从0到1)(sinx/x)*xdx=∫(从0到1)sinxdx=-cosx(0到1)=cos1-1再问:啊我知道了..谢谢啦~