exp(2*x)泰勒展开
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:04:38
我写在我博客里了,你去看看吧不懂的再联系
泰勒公式的核心之一是要构造无穷小量,即极限为零的量和一个非零量,然后进行展开,这里的构造也是这个道理,x-2就相当于无穷小量
先求ln(1+x)在0处的泰勒展式,这个你不能不会.然后把式子里面的x替换成x^2就好了.看到我得先后顺序没?你看看书.,上面得例题,老兄“他展开时的各级导数不一样的”发现你似乎对泰勒级数不太了解.啊
tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835++[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+.(|x|<π/2).
1、x^4/(1-x)=x^4(1+x+x²+...)=x^4+x^5+x^6+...=Σx^(n+4)n=0→∞2、lnx=ln(2+x-2)=ln[2(1+(x-2)/2)]=ln2+l
f(x)=1/(x+4)=1/[6+(x-2)]=1/6*1/(1+(x-2)/6)=1/6Σ(-1)^n*(x-2)^n(n从0到∞)|x-2|
然后你把图中的x用-x代替即可,容易发现所有的项都变成了负号
x表示自变量啊,a表示在a附近展开,对于无限可导的函数,a可以在任意位置再答:表示区间(a-r,a+r),其中r是很小的正数再问:大哥很小的正数啥意思啊?再答:靠,你火星来的吧?“很小”不会,还是“正
你如果不用弧度而用角度或者是其他的什么度,也不是不可以,例如此时sin(x)的泰勒展开式就是(用角度表示)sin(x)=x*Pi/180-x^3/3!/(Pi/180)^3+...因此必须要增加系数(
看图吧~
f'(x)=-2x/(1-x²)f''(x)=[-2(1-x²)-(-2x)(-2x)]/(1-x²)²=-2(1+x²)/(1-x²)
首先你要明确泰勒展开在不同的前提设定下可以有不同的展开.就这个函数来说,对sinX可以先展开=sin(sinx)=sinx-(1/3!)(sinx)^3+(1/5!)(sinx)^5-(1/7!)(s
如果你有足够耐心,多算几个阶次的导数,代入计算,看看就明白了!前提是别算错!我自己以前把类似展开式算到12阶,只是为了找直观感受!因为前面0比较多,算出十几项,最终排下来也只有三四项.
首先x是自变量.并注意到f(x+1)对x求导为f'(x+1)*1=f'(x+1)所以在x0处的二级局部泰勒展开式为:Tn(x)=f(x0+1)+f'(x0+1)(x-x0)+(1/2!)f''(x0+
再答:再答:求采纳再答:泰勒公式有点长,后面一部分在第二张照片上。再问:这个题目啥意思再问:其实题目本身就不太懂再答:就是让你写lnx的n阶泰勒公式,要求是按(x-2)的幂的形式展开即泰勒公式中的x0
第一问:把sinx也按泰勒公式展开,带进去,如sinx展开为四项,sinx^2展开为两项,后面的依次为一项,一项,将上述带进去再加总...大于x^4的都不要第二问:相加等于小的那个字母,这是公式o(x
令y=-x^2那么把e^y泰勒展开,然后再把y=-x^2带进去就是结果,相当于做了下变量替换,当然是等价的.第二个问题:应该是f(x)=f(1)+f'(1)(1-x)+……表示把f(x)在1出泰勒展开