比较审敛法∑(n=1)(√n3 1-√n3)乘共轭根式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:39:30
1)、如果原题是数列an=n∧3+Xn(n属于N),且满足a1(n-1)∧3-n∧3所以当原题为数列an=n∧3+Xn(n属于N)时x取值范围:x>1∧3-2∧3=-72)、如果原题是数列an=3*n
[∞∑n=1]1/[(2n+1)]>[∞∑n=1]1/[(2n+2)]=(1/2)[∞∑n=1]1/[(n+)]=(1/2)[∞∑n=2](1/n)后者为调和级数(是p=1时得p级数),发散,故原级数
lim(n→∞)(n+1)(n+2)(n+3)/(5n³+n)=lim(n→∞)(1+1/n)(1+2/n)(1+3/n)/(5+1/n²).分子分母同时除以n³=1/5
∵当n≥2时,有a1+a2+…+an-1+an=n3,a1+a2+…+an-1=(n-1)3,两式相减,得an=3n2-3n+1,∴1an−1=13n(n−1)=13(1n−1-1n),∴1a2−1+
m2+m-1=0,n2-n-1=0代数式m3+n3+2m2-2n2+2008的值m2+m-1=0,n2-n-1=0m^2+m=1,n^2-n=1m3+n3+2m2-2n2+2008=m^3+m^2+m
因为当n趋于无穷时,π/2^n趋于0所以根据等价无穷小的代换:sint〜t(t—>0),有sin[π/(2^n)]〜π/(2^n)(n—>无穷)所以[∞∑n=1]sin[π
可加Q群:27896931或223817400
证明:因为m³-n³=(m-n)(m²+mn+n²)m²-n²=(m-n)(m+n)所以有(m-n)(m²+mn+n²)
lim(n→∞)(3n³-2n+1)/(8-n³)=lim(n→∞)(3-2/n²+1/n³)/(8/n³-1)=-3
∵n2+n-1=0,∴n3+2n2+2008=n(n2+n-1)+(n2+n-1)+2009=0+0+2009=2009.故答案为:2009.
C(n1)+2C(n2)+3C(n3)...+nC(nn)=nC(n-1,0)+nC(n-1,1)+nC(n-1,2)...+nC(n-1,n-1)=n2^(n-1)
没错吧,你用的是什么版本,我的那个matlab没错再问:用的7.0版本,把n1,n2,n3换掉就有错了,不知道为什么啊n=6;m=5;l=10;n1=0:5;n2=0:4;n3=0:10;y=conv
n=3n^2+n^3=9+27=36=6^2
如果你想证明的话,可用归纳法证明、如果想问这是怎么得来的,这个需要用到大学数学知识了
你好要用数学归纳法证明:1、当n=1时,右边=1²*2²/4=1=1³=左边,成立2、假设n=k,k是正整数时成立,即1³+2³+...+k³
(2m+n)(2m-n)+n(2m+n)-8m²n²÷(2n)m=-1/24m²-n²+2mn+n²-4mn=-1/28m²-4mn=-1
证明:1)当n=1时,1³=1,[1×(1+1)/2]²=1成立2)假设n=k时成立,即1³+2³+3³+.+k³=[k(k+1)/2]
(n3-n+5)/(n2+1)=[(n^3+n)-(2n-5)]/(n^2+1)=n-(2n-5)/(n^2+1)所以(2n-5)/(n^2+1)必须为整数.=>|2n-5|>n^2+1或者2n-5=
1、当n=1时f(1)=1g(1)=3/2-1/2=1所以左边等于右边2、假设n=k时命题成立即1+1/23+……+1/k3小于等于3/2—1/2k2当n=k+1时左边=(1+1/23+……+1/k3
S1=U1=1^3=1Un=Sn-S(n-1)=n^3-(n-1)^3=3n^2-3n+1