比值审敛法证明∑1 n是发散级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:10:03
不一定收敛,需要用其它方法判断.经济数学团队帮你解答.请及时评价.谢谢!
首先,由Leibniz判别法,可知级数∑(-1)^n/√n收敛.两级数相减得∑(-1)^n·(1/√n-1/(√n+(-1)^n))=∑1/(√n(√n+(-1)^n)).这是一个正项级数,通项与1/
该级数即∑(-1)^n/√n+∑1/n,前者条件收敛,后者发散,其和发散.
1/2^n公比为1/2的几何级数收敛1/n调和级数发散收敛级数与发散级数的和发散.1/2^n与1/n的前n项部分和分别为sntn,则sn收敛,tn发散设wn=sn+tn,如果wn收敛,则tn=wn-s
因为对于e^(-1/n^2),当n→∞时,-1/n^2从-1趋向于0(左边趋近)而e^x对于x∈(-1,0),其值是从1/e逐渐趋向于1,相当于数列的a(n)项的极限趋向于1,根据数列和的收敛定义,正
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
反证法:若级数(un+vn)收敛,则级数(vn)=级数(un+vn-un)=级数(un+vn)-级数(un)收敛.矛盾.
你只要比较[n^(1/n)-1]与1/n的大小即可.显然当n足够大时n>(1+1/n)^n,这是因为后一项趋向于e.从而n^(1/n)>1+1/n.
级数∑1/n^2的前n项和sn=1+1/2^2+1/3^2+……+1/n^2是递增的,且sn
如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.
发散,因为形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是p=1的p级数.调和级数是发散级数.在n趋于无穷时其部分和没有极限(或部分和为无穷大).
利用积分判别法可证:由于 ∫[2,+∞][1/(xlnx)]dx=(lnx)²|[2,+∞]=+∞,利用积分判别法可知该级数发散.
两个方法.(1)按定义,将一般式写成ln(n+1)-ln(n),求得部分和数列Sn=ln(n+1),极限为无穷大,原级数发散.(2)用比较审敛法的极限形式,因为级数的一般项ln(1+1/n)与1/n是
我只能告诉你不能,不过可以告诉你为什么发散当x大于0是x大于ln(1+x),可以用求导来证,所以1/n小于ln(1+1/n)等于ln(n+1)-ln(n),这样加起来的和就小于ln(n+1),也就是无
因为1/(xlnx)在[2,+oo)上的广义积分是发散的,而1/(xlnx)是单调的.再问:讲明白点,我看的是数三全书里出分现的,最好写大概的证明过程,搞懂了追加!再答:看来你知识比较少,就给你讲最简
用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.
答:柯西积分判别法:若f(x)x>0是非负的不增函数,则级数∑[n从1到正无穷]f(n)与积分∫[1到正无穷]f(x)dx同时收敛或同时发散.记f(x)=1/(xln(x+1)),满足f(x)x>0是
“数学之美”团员448755083为你解答!调和级数A=∑(1/n)=1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+(1/8)+(1/9)+(1/10)+.显然1/3>1
∑(-1)^n[1-cos(1/n)]对应的正项级数∑[1-cos(1/n)]=∑2{sin[1/(2n)]}^2后者收敛,则原级数绝对收敛.
{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛