正方形ABCD边长为4cmAE边长为5cmBF垂直AE雨点F求BF的长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 15:21:08
正方形ABCD边长为4cmAE边长为5cmBF垂直AE雨点F求BF的长
正方形ABCD的边长为4,BE∥AC交DC的延长线于E.

(1)因为BE∥AC,AB∥CD,所以四边形ABEC是平行四边形,所以CE=AB=4,所以△AED的面积为12×4×(4×2)=16;(2)四边形APCD的面积与正方形ABCD的面积相等,因为BE∥A

求三角形面积.ABCD,DEFG,IFHJ均为正方形,正方形DEFG的边长为4,求三角形AGJ的面积,

做辅助线:连接AC,EG,EJ,可知AC,EG,EJ相互平行S△AGJ=S△AEG+S△EJG因AC,EG平行,所以有S△AEG=S△EDC=1/2*4*4因EJ,EG平行,所以有S△FEG=S△EJ

已知四边形ABCD是边长为4的正方形

解题思路:利用等腰三角形性质解题过程:见附件最终答案:略

1.下图中,正方形ABCD的边长为4厘米,求长方形EFGD的面积.

2.一个小正方形的面积是:(72/4)*(72/4)/4=81平方厘米3.面积是增大了:(220-10)*(80+10)-220*80=220*80-800+2200-100-220*80=1300平

如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

如下图,正方形ABCD边长为1

(π(派)-2)/2

已知正方形ABCD边长为4,用一个圆将它覆盖,最小直径为多少

最小的圆覆盖,那么这个最小圆的直径就是这个正方形的对角线,也就是4根号2

下图中,ABCD、CEFG都是正方形,且正方形ABCD的边长为4厘米,求阴影部分的面积.

根据勾股定理:BD=根号32DF=根号8△BDF是直角三角形所以:阴影部分的面积是16平方厘米再问:小学五年级数学请详细说明再答:那对不起你还没有学勾股定理勾股定理是:直角三角形两直边的平方和等于斜边

已知正方形abcd内阴影部分的面积为4平方厘米,求正方形的边长

寒樱暖暖为你先设,正方形的边长为A则阴影部分面积为:2×1/4×3.14×A^2所以正方形的面积为:A^2=4÷(2×1/4×3.14)=4÷1.57约=2.55厘米正方形的边长为:A=√2.55约=

ABCD是正方形,边长为1,求三角形面积和?

⊿CQD绕C逆时针旋转90º到达⊿CFB,⊿AQD绕A顺时针旋转90º到达⊿AEB⊿APE≌⊿APQ,⊿CPQ≌⊿CPF(皆SAS),S⊿PBE=S⊿PBF(BE=

正方形ABCD的边长为4,AE等于3,BF等于2,求GDCF的面积

延长GF,与DC的延长线交于点HFB=FC=2所以,△FCH≌△FBACH=AB=4DH=CD+CH=8过点G做MN∥AD,交AB与点M,交CD于点N则MN分别垂直AB和CD因为,△AGE∽△HGD所

如图,正方形ABCD的边长为4,正方形OEFG的边长为6,O是正方形ABCD的对角线交点,则图中阴影部分面积为4

晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?

已知正方形ABCD的边长为4a,求图中阴影部分面积.

设小正方形的x则面积S1=(1/2)*4a*(4a-x)=8a²-2ax面积S2=(1/2)*x²=(1/2)x²面积S2=(1/2)*4a*(4a+x)=8a²

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,

OA=OD=AD/sqrt(2),D(0,2sqrt(2))如图,PED-PFA全等,PEOF为正方形,PO平分DOF当A接近O时,PE接近1/2AB,当A接近F时,PE接近PD,所有范围是1/2AD

在边长为8的正方形ABCD中,点O为AD上一动点(4

1、在RT△ODM中,DM²+OD²=OM².∵OM=OA,OD=8-OA.∴X²+(8-OA)²=OA²X²+64-16OA+O

如图,正方形ABCD边长为4,AE=2BE,求阴影

设AC、DE交于FAC为正方形对角线,也为∠BAD的角平分线,在三角形AED中应用角平分线定理,EF/FD=AE/AD=2/3,又S△CDE=1/2S口ABCD=8,S△CDF/S△CEF=DF/EF

正方形ABCD边长为1,分别以4个顶点为圆心,边长为半径,叫于EF,求EF

花了我2优点···Lz一定要采纳啊,不然我就亏了··· 点击图片放大!   很高兴为您解答,【学习宝典】团队为您答题.如追加其它问题, 如果有其他需要

如图,已知正方形ABCD的边长是4,对角线AC、BD相交于点O,另一个边长也为4的正方形OEFG,两个正方形重

不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4

如图,在平行四边形ABCD中,AE垂直DC,AF垂直BC,垂足分别为E,F.若平行四边形ABCD的周长为28CmAE:A

如图可知,角AED和角AFB为直角即90度,又因为四边形ABCD为平行四边形,所以角B等于角D,即可证△AED相似于△AFB.又因为AE,:AF比为3:4,所以AD:AB为3:4.又因为四边形ABCD