正方形abcd的边长为4,以AB所在的直线为X轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 19:07:41
1.圆O分别与CD,BC切于点M,N,则OMCN为正方形,则∠OCM=45°,又∠ACM=45°所以A,O,C在同一直线上;圆A与圆O相切与P,则A,O,P在同一直线上(两圆相切,切点在两圆的连心线上
解题思路:利用等腰三角形性质解题过程:见附件最终答案:略
由正方形得出边为根号24厘米,该题阴影部分面积是圆面积的1/4,由圆面积公式可得:阴影面积=1/4πR^2=1/4×π×√24^2=6π=18.84平方厘米
画出正方形的两条对角线,可以将阴影部分正好拼成一个三角形(正方形的一半)即a的平方的一半
大圆面积=π*(a/√2)²=a²π/2正方形面积=a²小半圆面积=(1/2)*π*(a/2)²=a²π/8∴所求阴影部分面积=4*小半圆面积+正方形
根据题意可知AF=AB=4,CE=EF,设DE=XX^2+4^2=(4+4-X)^2,X=3,△ADE的面积S=6.
如图:由将阴影部分划分为4个全等部分的每个面积=14×(正方形ABCD的面积-正方形DEFG的面积)=316a2,即3个小正方形的面积.
如果你还没有立体的概念,那你只要延长fa到hc上交于点o,则高为fo=(af+ao),s=(ef+hc)fo/2.如果这是立体图形,每一种bad角都对应有一个面积范围,没有固定值,但能求出最大和最小值
因为正方形ADGN的面积是8所以边长HD=4(正方形面积=1/2*对角线的平方)AB=CD=2又平行四边形ABCD的面积是4所以平行四边形的高是2梯形的高=平行四边形的高+BE=4上底=AB=2梯形的
阴影部分面积=a²-1/4a²π=(1-1/4π)a²(一般写这个结果)=0.215a²(π取3.14写这个结果)
以BC的中点即半圆的圆心为O设CE为x,则CE=4-x∵AE为半圆的切线∴∠OFE=90°∴∠C=∠OFE=90°在△OCE和△OFE中,OE=OE,∠C=∠OFE(HL定理)∴△OCE≌△OFE(全
有的..因为面积四等分..设AE在AC中最短AF其次AG最长,AE=b,AF=c,AG=d面积四等分则b平方=(1/4)a平方c平方-b平方=(1/4)a平方即:c平方=(1/2)a平方d平方-c平方
如图,即求 EFGH 所围成区域的面积吧.有如下步骤:一.求区域 DEFGC 的面积(即以 DC 为底,以 弧DEF&
1、P、Q相遇,说明两点走的路程相加是正方形的周长.即t+4*t=16,t=3.2s2、一次相遇是走过了一个正方形周长,4次相遇就是4个正方形的周长.即(1+a)*16=4*16,a=33、第2013
连接OF、AO、OE有OF⊥AE,AO⊥OE(可证)△AOF∽△FOE∽△AOE△AOF≌△AOB,△FOE≌△COEAF=AB=4 FO=2AO=2√5 EO=√5 A
设小正方形的x则面积S1=(1/2)*4a*(4a-x)=8a²-2ax面积S2=(1/2)*x²=(1/2)x²面积S2=(1/2)*4a*(4a+x)=8a²
虽然没看到图,不过也能做.A(0,0)B(3/2√2,3/2√2)C(3√2,3√2)D(-3/2√2,3/2√2)
A(0,0),C(0,6√2),B(3√2,3√2),D(-3√2,3√2).再问:边长是6再答:正方形的边长是6,则其对角线AC=6√2.因为,AC^2=AB^2+BC^2.=6^2+6^2.=36
这样的正方形ABCD有无限多个.(a,b可以取任何实数值!)
如图,过E作EI⊥CD于I则EI=1/2AD=1/2EC∴∠ECD=30°同理,∠FCB=30°∴∠ECF=30°∴弧EF=30°/180°*π*a=1/6aπ∴阴影部分周长为2/3aπ