正方形abcd的边长为1,若EC=BC,EF⊥BE,BG与GF的乘积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:24:09
正方形abcd的边长为1,若EC=BC,EF⊥BE,BG与GF的乘积
如图,已知正方形ABCD的边长为1,E,F分别为AD,BC的中点,把正方形沿对角线AC折起直二面角,

过E作EG⊥AC于G,∵E是AD中点,则AG=AC/4,连FG∴FG²=5/8∵⊿ADC⊥⊿ABC∴EG⊥FG∵正方形ABCD的边长为1,则AC=√2在RT⊿EFG中EG=√2/4∴EF&#

已知正方形ABCD的边长为1,点E是AB边上的动点,则DE•DC

以AB、AD所在直线为x轴、y轴,建立坐标系如图可得A(0,0),B(1,0),C(1,1),D(0,1)设E(x,0),其中0≤x≤1∵DE=(x,-1),DC=(1,0),∴DE•DC=x•1+(

正方形ABCD的边长为4,BE∥AC交DC的延长线于E.

(1)因为BE∥AC,AB∥CD,所以四边形ABEC是平行四边形,所以CE=AB=4,所以△AED的面积为12×4×(4×2)=16;(2)四边形APCD的面积与正方形ABCD的面积相等,因为BE∥A

已知正方形ABCD边长为1 E,F分别为AB和AD的中点 求阴影部分的面积.

连AC必过点G,E、F是中点AG/GC=1/2,S△AEC=(1/4)×(1/3)=1/12过G作GM∥EC,知AM/ME=1/2,ME/ED=2/3,S△EGH=(1/12)×(2/5)=1/30∴

如图,在正方形ABCD的边长为2,E为线段AB上一点,

1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

如下图,正方形ABCD边长为1

(π(派)-2)/2

如图:E是边长为1的正方形ABCD的对角线BD上一点

把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,

如下图,求四边形ABOD的面积,正方形ABCD,边长为1,E,F分别是BC,CD的中点.

∵E、F是BC、CD的中点,∴SΔBCF=SΔCDE=1/4,连接OC,则SΔOCE=SΔOBE=SΔOCE=SΔOBE=1/3*1/4=1/12,∴S四边形ABOD=1-4×1/12=2/3.

正方形ABCD的边长为1,E在CD上,F在射线AD上,DF为x

(2)个人感觉有点问题,DF的长为(0,1](3)DF=1/3,因为,△BEG为等腰△,只存在一种情况的,即BE=EG,画出图,根据相似三角形就可以求出的,

若正方形ABCD边长为1,点F在CD上运动,AE平分∠BAF交BC与E.

延长CB使BM=DF连接AM△ADF≌△ABMAM=AF∠DAF=∠BAM∠DAF+∠BAF=90du3∠BAM+∠BAF=∠MAF=90°∠MAE+∠EAF=90°∠AEB+∠BAE=90°∠∠MA

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

已知,如图,正方形ABCD的边长为1,等边△CEF的顶点E、F分别在AD、AB边上求△CEF的边长

由直角三角形HL(斜边与直角边)可知:Rt△CDE≌Rt△CBF∴DE=BF设EA=AF=x;DE=y∴x+y=12x²=y²+1联立消元,得2x²=(1-x)²

如图,已知正方形ABCD的边长为10cm,点E在AB边

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

如图,正方形abcd的边长为1,e为CD的中点,求阴影面积.上 左a 右b 下 d e c

AB:DE=DO:OB=2:1(O是AE,BD交点)作OP⊥AB于P,OP:AD=BO:BD=2:3得OP=2/3,再答:阴影面积=SΔABD+SΔABE-SΔABO=2/3还请采纳O(∩_∩)O~

已知边长为1的正方形ABCD中,点E,F分别在边BC,CD上1如图1,若AE⊥BF

顺时针旋转ADF90度至ABF'(AD与AB重合),连接EF,易证EF=EF',勾股定理易求BE=1/2设DF=xEF^2=EF'^2=(1/2+x)^2=(1-1/2)^2+(1-x)^2x=1/3

已知E F分别为正方形ABCD边BC CD上的点 且△AEF为等边三角形,若正方形的边长为1,求EF的长

∵AE=AF;AB=AD.∴Rt⊿ABE≌Rt⊿ADF(HL),BE=DF.∴CE=CF,设CE=CF=X,则BE=1-X;AE=EF=√2X.∵AB^2+BE^2=AE^2,即1^2+(1-X)^2

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2