正方形abcd中点p是对角线ac上一点,pe垂直cd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:02:32
正方形abcd中点p是对角线ac上一点,pe垂直cd
如图所示,在正方形abcd中,P是对角线AB上的任意一点

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此

在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB

⑴  上图.⊿PSE≌⊿PTB﹙ASA﹚,∴PE=PB.. ⊿PBE等腰直角.∠EBF=45º,⊿BCE绕B逆时针旋转90°,到达⊿BAG. &nbs

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与

(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形

正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作PF⊥DC于点F.如图1,当点P与点O重合时,

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

在正方体ABCD-A1B1C1D1中,P 是B1D1的中点,对角线A1C交平面 AB1D1=Q.求证A,Q,P三点共线

证明:连结A1C1因为AA1//CC1,所以四边形AA1C1C是平面图形已知点P是B1D1的中点,那么点P也是A1C1的中点所以:平面AA1C1C∩平面AB1D1=AP又对角线A1C交

初三证明题:如图,正方形ABCD中,点O是对角线AC的中点,点P为对角线AC上一动点,过点P做PF⊥DC于F,如图1,

(1)连接BE、PD,过点P作AD的垂线,垂足为G,①因为点O为正方形ABCD对角线AC中点,∴点O为正方形中心,且AC平分∠DAB和∠DCB,∵PE⊥PB,BC⊥CE,∴B、C、E、P四点共圆,∴∠

正方形abcd中,点e是ab的中点,在对角线ac上找一点p,使pe+pb最短

作另一条对角线BD,连接ED,交AC于P点,P点为所求.且PD=PB,则PE+PB=PE+PD=ED﹙两点之间,线段最短﹚

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.

①求证:∠PDE=∠PED;证明:∵四边形ABCD是正方形∴AB=ADAC平分∠BAD和∠BCDAC⊥BD∴∠BAC=∠DAC=∠ACD=∠CDB=45°又∵AP是公共边∴△BAP≌△DAP∴BP=D

边长为4的正方形ABCD中,点o是对角线AC的中点,P是对角线AC上一动点.

 提示:⑴过P作BC的垂线,垂足为G.∵P是AC上的点,∴PG=PF,又 ∠BPG+∠EPG=∠RPG+∠EPF=90°,  将⊿PBG绕P逆时针旋转90°;与

P,Q分别是四边形ABCD的对角线AC,BD 的中点,记 → →

(利用三角形中位线)设CD中点为M,连MP,MQ则向量PQ=向量MQ-向量MP=-0.5向量a-0.5向量b=-0.5(向量a+向量b)

如图,正方形ABCD的边长为2,E是CD的中点,在对角线AC上有一点P,则PD+PE的最小值是______.

连接BE,∵四边形ABCD是正方形,E是CD的中点,∴点B、D关于直线AC对称,CE=12CD=1,∴BE即是PD+PE的最小值,∴BE=BC2+CE2=22+12=5.故答案为:5.

已知正方形ABCD的边长是2,E是CD中点,P为正方形ABCD上的一个动点,动点P从A出发,沿A,B,C,E运动,若P经

根据已知条件先解出AED三边长,用勾股定理.然后再利用相似三角形边长比例相等的关系,分别用不同的边的比值相等.列三个三元一次方程.解出来AEP三种答案,再讨论成立否.求X.不清楚了在问我.按这个先算算

还有一道A卷题正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作PF垂直DC与点F.如图一,当点

如图,连接PD1.△APB≌△APD∴角PBC=角PDF又∵角PBC+角PEC=180角PEC+角PED=180∴角PEF=角PBC=角PDF∴△PFE≌△PDF∴DF=EF2.由正方形斜边与边的关系

如图所示,正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,求PE+PB的最小值

连接DE,交AC于点P,连接BD∵点B与点D关于AC对称∴DE的长即为PE+PB的最小值∵AB=4,E是BC的中点∴CE=2在Rt△CDE中DE=√(CD^2+CE^2)=√(4^2+2^2)=2√5

如图,在边长为2的正方形ABCD中,点Q是BC中点,点P为对角线AC上一动点,连接PB、PQ,

BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=

边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F……急求高手解答

证明:(1)连接PD,BE∠BPE=∠BCE=90°,(BCEP四点共圆,可得∠CBE=∠CPE,∠PCE=∠PBE,∠CBP=∠CBE+∠PBE=∠CPE+∠PCE=∠PEF于是有∠CBP=∠CDP

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点

题目显然有问题.DF怎么可能与CF垂直呢? F点在CD上面.应是CF=DF吧.(1)如图,连接PD,作PG⊥BC于G.1.易证明PF=PG,∠BPG=∠EPF.因此,三角形BPG与EPF全等

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P