正方形ABCD中一点P,角PAD等于角PDA等于15度,求三角形PBA为正三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:42:20
答案我已经写在草稿本上了,发答案你
如图,O为四边形ABCD对角线交点 过NE‖AB,交BC于N,交AD于E 连MN 易知: MN‖PB(M为PC中点,N为BC中点,MN为△PBC中位线)&nbs
用假设:如果pc垂直PAB,则pc垂直pa.(1)连接ac,因为pa垂直ABCD(题目条件),则pa垂直ac.(2)这样,在三角形pac中出现2个90度角,很显然(1)(2)互为悖论.
将△APB绕B顺时针旋转90度,得△CQB,则QP=2根号2,∠CQP=90度CQ=1,所以PC=3
1、(1)扫过区域是个以a为半径,圆心角为90度的扇形,所以面积是πa^2/4.(2)由已知,P'B=PB=4,P'C=2,且∠PBP'=90,所以∠PP'B=45,PP'=4√2;又因为∠BP'C=
以B为圆心,把BCP绕顺时针方向转,使BC与AB重合.点P落在点Q上,连接QP.所以BQ=BP=2,AQ=PC=3因为角CBP=角ABQ,所以角QBP=90度所以QP=2*根号2,角QPB=45度在三
将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=2,QA=PC=3,∠ABQ=∠PBC,由于∠PBC+∠ABP=90°,所以∠PBQ=∠ABQ+∠ABP=∠P
如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d[标签:papb,正方形,abcd]二、如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d1.将△PAB绕点B顺时
大于1/6时,P到AB的距离应该大于1/3BC;小于1/5时,P到AB的距离应该小于2/5BC.所以如楼上的所说的概率为2/5-1/3=1/15
将三角形PBC逆时针旋转90°得到三角形ABM,则BM=2,AM=3,连结PM,角BPM=45°,用勾股定理逆定理证角APM=90°,
连结BD交AC于O点则ΔOBP是直角ΔBP=2APOA=AC/2AP=AC/4OP=AC/4=APOP=BP/2cos∠APB=P0/BP=1/2∠APB=60°如仍有疑惑,欢迎追问.祝:再问:��Ŀ
过P作PE垂直AD于E,延长EP交BC于F因为ABCD是正方形,所以AD∥BC,所以PF⊥BC.因为∠PAD=∠PDA=15°所以△PAD是等腰三角形而PE⊥AD所以EF为AD的垂直平分线所以PB=P
(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=π/4(a^2-b^2);(2)连接PP′,根据旋
把ΔPAB绕B旋转,使AB与AC重合,P点落在P',连PP'.易得等腰直角三角形PBP',PP'=4√2,∠PP'C=90,PC^2=(4√2)^2+2^2,PC=6
连接AC,BD因为在正方形ABCD中AC与BD是正方形有对角线则AC⊥BD因为PA⊥平面ABCD且BD∈平面ABCD所以PA⊥BD所以BD⊥平面PAC因为BD∈平面PBD所以平面PBD⊥平面PAC连接
(辅助线如图,其实图片也不老清楚的)将△APB顺时针旋转90°,连结PP'△ABP全等于△CBP'∴∠1=∠2∵四边形ABCD是正方形∴∠1+∠3=90°∴∠2+∠3=90°∴BP=BP'∴△BPP'
把⊿BCP绕B逆时针旋转90º,得到△BAQ△BPQ等腰直角,PQ=√2BP=2√2AQ=CP=3AP=1∴AP²+PQ²=AQ²∴∠APQ=90º又
∠APB=135°设PA=a,PB=2a,PC=3a把△ABP绕点B顺时针旋转90°得△AEQ∵正方形ABCD中,AB=BC∴E与C重合∵△ABP≌△CBQ∴CQ=AP=a,BQ=BP=2a∴∠ABP
底边是正方形,连结对角线AC,AC=√2a,PA=AC,PA⊥平面ABCD,AC∈平面ABCD,PA⊥AC,三角形PAC是等腰直角三角形,AC是斜线PC的射影,〈PCA就是PC与平面ABCD的成角,〈
解题思路:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP\'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积