正方形ABCD中,点P是对角线BD上的一个动点,PE垂直于BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:04:24
PE+PD最小就是BE的长,BE就是正方形的边长,∴S正方形ABCD=25.
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
⑴ 上图.⊿PSE≌⊿PTB﹙ASA﹚,∴PE=PB.. ⊿PBE等腰直角.∠EBF=45º,⊿BCE绕B逆时针旋转90°,到达⊿BAG. &nbs
解题思路:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;(2)证明思路同(1)解题过程:
(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形
不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
(1)连接BE、PD,过点P作AD的垂线,垂足为G,①因为点O为正方形ABCD对角线AC中点,∴点O为正方形中心,且AC平分∠DAB和∠DCB,∵PE⊥PB,BC⊥CE,∴B、C、E、P四点共圆,∴∠
证明:(1)∵AC是对角线∴∠ACD=∠ACB=45°∵PC=PC,BC=DC∴△BCP≌△DCP(2)∵PE=PB∴∠PBC=∠PEC∵△BCP≌△DCP∴∠PBC=∠PDC∴∠PBC=∠PDC=∠
①求证:∠PDE=∠PED;证明:∵四边形ABCD是正方形∴AB=ADAC平分∠BAD和∠BCDAC⊥BD∴∠BAC=∠DAC=∠ACD=∠CDB=45°又∵AP是公共边∴△BAP≌△DAP∴BP=D
提示:⑴过P作BC的垂线,垂足为G.∵P是AC上的点,∴PG=PF,又 ∠BPG+∠EPG=∠RPG+∠EPF=90°, 将⊿PBG绕P逆时针旋转90°;与
1.已知正方形ABCD中,对角线AC=10CM,点P是AB边上的点,则点P到AC,BD的距离之和为__5倍根号2___.2.在矩形ABCD中,对角线AC,BD相交于点O,若角AOD=120度,AB=4
如图,连接PD1.△APB≌△APD∴角PBC=角PDF又∵角PBC+角PEC=180角PEC+角PED=180∴角PEF=角PBC=角PDF∴△PFE≌△PDF∴DF=EF2.由正方形斜边与边的关系
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
连接DE,交AC于点P,连接BD∵点B与点D关于AC对称∴DE的长即为PE+PB的最小值∵AB=4,E是BC的中点∴CE=2在Rt△CDE中DE=√(CD^2+CE^2)=√(4^2+2^2)=2√5
BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=
连接BE、PD,过点P作AD的垂线,垂足为G,①因为点O为正方形ABCD对角线AC中点,∴点O为正方形中心,且AC平分∠DAB和∠DCB,∵PE⊥PB,BC⊥CE,∴B、C、E、P四点共圆,∴∠PEB
证明:(1)连接PD,BE∠BPE=∠BCE=90°,(BCEP四点共圆,可得∠CBE=∠CPE,∠PCE=∠PBE,∠CBP=∠CBE+∠PBE=∠CPE+∠PCE=∠PEF于是有∠CBP=∠CDP
题目显然有问题.DF怎么可能与CF垂直呢? F点在CD上面.应是CF=DF吧.(1)如图,连接PD,作PG⊥BC于G.1.易证明PF=PG,∠BPG=∠EPF.因此,三角形BPG与EPF全等
http://hi.baidu.com/snm%C4%DD%B6%F9/blog/item/402aaf94dd3e444cd1135efb.html