正方形ABCD中,点M.N分别为BC.CD上的点,∠MAN=45°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:50:34
正方形ABCD中,点M.N分别为BC.CD上的点,∠MAN=45°
在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP垂直于NQ,MP与NQ是否相等

不知道你说的是不是这个图?现在我试着证明做QF垂直BC于F,再做PE垂直AB于E.因为四边形ABCD是正方形,QF垂直BC,PE垂直AB,所以PE=AD=AB==QF,得出:PE=QF,而且PE和QF

已知正方形ABCD中 如图,M、N分别为BC、CD上的点,∠MAN=45°,求证 BM+DN=MN

证明:延长CB到G使BG=DN,∵AB=AD,GB=DN,∠AGB=∠ADN=90°,∴△AGB≌△AND,∴AG=AN,∠GAB=∠NAD∵∠MAN=45°,∠BAD=90°,∴∠GAM=∠NAM=

如图所示,正方形ABCD中,对角线AC、BD交于点O,点M、N分别为OB、OC的中点,则cos∠OMN的值为(  )

∵正方形ABCD中,对角线AC、BD交于点O,∴∠OBC=45°.∵点M、N分别为OB、OC的中点,∴MN∥BC.∴∠OMN=∠OBC=45°.∴cos∠OMN=cos45°=22.

已知正方形ABCD-A1B1C1D1 若M、N分别为B1D1与C1D上的点,且MN⊥B1D1,M

以A1为原点,A1B1,A1D1,A1A为xyz轴建系设棱长为1,则B1D1→=(-1,1,0),DC1→=(1,0,-1)∵MN⊥B1D1,MN⊥DC1,即MN所在直线的方向向量是B1D1→和DC1

已知正方形ABCD-A1B1C1D1中,点E,F,G,H,M,N分别是AB,BC,CC1,AA1,C1D1,AA1,C1

NM‖A1C1‖AC‖FGN,M,F,G共面α,D1M‖=AF,D1MFA是平行四边形,D1A‖MFNE‖D1A‖MF.N,E,M,F共面.E∈面(NMF)=α,同理H∈α,E,F,G,H,M,N六点

边长为1的正方形ABCD中,点E,F分别是AB,BC的中点,DE交AC于M,DF交AC于N.

则点Q取自阴影部分的概率是2/3MN与EF的比值是2/3再问:上面三个2怎么来的?为什么都是2?再答:

已知正方形abcd中,dc=12,e为cd上一点,de=5,ae的中垂线分别交ad,bc于点m,n

如图,作MQ⊥BC于Q,MQ交AE于F∵正方形abcd∴∠D=90°,AD=CD=12∵DE=5∴AE=Sqrt(AD^2+DE^2)=13∵MN为ae中垂线∴∠APM=90°,AP=AE/2=13/

如图,正方形abcd中,m,n分别为ad,dc的中点,cm与bn交与点p,求证pa等于ab

证明:延长cm与ba的延长线相交于点g因为abcd是正方形所以角mdc=角bcn=角bad=90度ab=dc=bcab平行dc所以角mdc=角mag角mcd=角mga因为点m是ad的中点所以dm=am

请阅读下列材料:正方形ABCD中,M,N分别是直线CB、DC上的动点

⑴ ⊿ABE≌⊿ADN﹙SAS﹚∴∠DAN=∠BAE  ∠NAE=∠NAB+∠BAE=∠NAB+∠DAN=90º ∴∠MAE=90º-∠MA

正方形ABCD-A1B1C1D1中,M ,N分别是A1B和AC上的点,A1M=AN,求证:MN//平面BB1C1C

连接BD、A1D、B1C依题意可知N为BD的中点,A1D//B1C所以MN是三角形A1BD的中位线,得MN//A1D所以MN平行B1C,所以MN//平面BB1C1C再问:...

在正方形ABCD中,点E是AD上一动点,MN⊥AB分别交AB,CD于M,N,连接BE交MN于点O,过O作OP⊥BE分别交

(1)如图①结论:AE=MP+NQ.(2分)证明:过Q作QQ'⊥AB于Q',则∠MQ′Q=90°,∵MN⊥AB,∴∠AMN=90°,∵四边形ABCD为正方形,∴∠BAD=∠ADC=90°,∴四边形AM

在正方形ABCD中,点E是AD上一动点,MN⊥AB分别交AB,CD于M,N,连接BE交MN于点O,过O作OP⊥BE分别交

本题几问辅助线做法以及证明方法类似,都是利用原题中的正方形和垂直再作垂线后用三角形全等证出来.简单分析如下:(1)过点P作PF⊥CD于F,则MP=NF,由△PFQ≌△BAE得AE=QF=NF+NQ=M

如图 正方形abcd边长为2 m n分别是bc cd的两个动点 且在运动过程中 始终保AM⊥MN

证明:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠M

正方形ABCD中,M,N分别在BC,CD上,已知BM+DN=MN,求

⊿ABM绕A逆时针旋转90º,到达⊿ADG,GN=BM+DN=MN  ∴⊿ANM≌⊿ANG(SSS)∠NAM=∠NAG,  ∠MAG=∠MAD

已知在正方形ABCD中,AC,BD相交于点O,M,N分别是OA,OB上的点,且MN‖AB

第一问用三角形全等证根据正方形的性质可知OA=OB=OC,AC⊥BD∵MN‖AB∴OM=ON又∵OB=OC,∠MOB=∠NOC∴△MOB≌△NOC∴BM=CN第二问延长CN交BM于点E∵△MOB≌△N

已知:在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=0.75,求证:DM垂直MN

在正方形ABCD中AD=AB=4,∠A=∠B=90°∵AM=1,BN=0.75∴BM=3∴AD/AM=BM/BN=4∴⊿ADM∽⊿BMN∴∠ADM=∠BMN∵∠ADM+∠AMD=90°∴∠BMN+∠A

在正方形ABCD中,点E是AD上一动点,MN⊥AB分别交AB、CD于M、N,连接BE交MN于点O,过O作OP⊥BE分别交

(1)AE=MP+NQ证明:过P作PF‖AD交CD于F∵AB‖CD,MN‖AD∴PF‖MN‖AD∴四边形PMNF为平行四边形∴PM=FN,PM+NQ=FQ,PF=AD=AB,∠MNC=∠BMN=90°

如图,在正方形ABCD中,点M,N分别在AD,CD上,怎么证明MN=AM+CN?

学习一下思路切来的(2012•鸡西)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=