正方形ABCD,C是bc上的一点,DE垂直AG于E,BF垂直AG于F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:28:45
正方形ABCD,C是bc上的一点,DE垂直AG于E,BF垂直AG于F
如图,点P,Q分别是边长1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方向运动,速度为1c

(1).作PE⊥AC于E则△CEP相似于△CBAPE/AB=CP/AC正方形ABCD中AB=1∴AC=根号2又CP=1-XPE=(1-X)根号2*1/1S△APQ=y=AQ*PE/2=(-根号2/2)

如图,正方形ABCD的边长为4,M、N分别是边BC、CD上的两个动点,当点M在BC边上运动(不与B 、C 重合)时,

①∵AM⊥MN,∴∠AMB+∠CMN=90°在△AMB中,∠AMB+∠MAB=90°∴∠MAB=∠NMC,又∠ABM=∠MCN=90°∴△ABM∽△MCN②△ABM∽△MCN∴BM/CN=AB/MCB

四棱柱ABCD-A1B1C1D1中底面ABCD为正方形,侧棱AA1⊥底面ABCD,E是棱BC的中点,求证:BD1∥平面C

方法一:连接D1C,交DC1于点O,侧面DCC1D1为矩形 ∴CO=D1O,又点E为BC的中点,∴OE//BD1∴BD1//平面C1DE方法二:取AD的中点M,则D1M//C1E,BM//D

如图,已知在正方形ABCD中,P边BC上的一点,E是边BC延长线上一点,连接AP过点P作PF⊥AP,与∠DCE的平分线C

⑴①∠FPC=180º-90º-∠APB=∠PAB  (题目=∠EPC打错.是∠FPC)②取坐标系:B(0,0).,C(1,0),A(0,1),

如图,ABCD、CEFG是正方形,B、C、E在同一直线上,正方形ABCD的面积为5,正方形CEFG的面积是2

∵正方形ABCD的面积为5∴BC=根号5正方形CEFG的面积是2∴CE=根号2△BDG的面积=(根号5-根号2)×根号5=5-根号10=5-3.162=1.838

如图,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是 角DCP 的平分线上的一点

在AB上选一点Q使BQ=BM易得AQ=CM∵∠AMN=90°易得∠BAM=∠NMP∵CN平分∠DCP易得∠AQM=∠MCN∴△AQM≌△MCN∴AM=MN

如图,在正方形ABCD中,E.F.G.H分别是正方形ABCD的边AB.BC.CD.DA上的点,且

EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9

在正方形ABCD中,E,F分别是BC和DC上的点,且

将三角形ABE逆时针旋转,使AB与AD重合,B点转到B’点.证明三角形AB'F和三角形AFE全等,边角边然后三角形AB'F的面积是8*4/2=16注:B'F=EF=8,AD=4可得

已知正方形ABCD中,E是BC上一点,DE=2,CE=1,则正方形ABCD的面积为(  )

如图,∵在直角△DCE中,DE=2,CE=1,∠C=90°,∴由勾股定理,得CD=DE2-CE2=22-12=3,∴正方形ABCD的面积为:CD•CD=3.故选:B.

已知正方形ABCD的一条边在数轴上,在线段BC上取一点B’,以AB’为边向右作正方形AB’C’D’.

1、∵在△ABB'中,斜边AB'大于直角边AB∴正方形AB’C’D’的边长大于正方形ABCD的边长∴D’在D的正上方2、∵∠BAB'+∠BB'A=90°,∠EB'C’+∠BB'A=90°,∴∠BAB'

如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边C

阴影部分的面积=12×DH×AP+12×DG×AD+12×EF×AD+12×MN×BP=12×4×AP+12×3×12+12×3×12+12×4×BP=2AP+18+18+2BP=36+2×(AP+B

如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,

根据折叠的性质知:BP=BC,∠PBQ=∠CBQ∴BN=12BC=12BP∵∠BNP=90°∴∠BPN=30°∴∠PBQ=12×60°=30°.故答案为30.

如图所示,四边形ABCD,CEFG是正方形,B,C,E在同一条直线上,点G在CD上,正方形ABCD的边长是4,则△BDF

设EF=a则S△BEF=0.5a(a+4)S梯形CEFD=0.5a(a+4)S△ABD=8△BDF的面积是S△BDF=S梯形CEFD+S□ABCD-S△BEF-S△ABD=8

如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线

题目打漏,是正方形abcd改为正三角形abc ,我只证明⑵.⑴的证明留给楼主照样作.如图,BP是取Q,使⊿NCQ也是正三角形,设AB=a,QC=s,CM=t,则MB=a-t∠Q=∠B=60&

如图,P是正方形ABCD的对角线AC上一点,E在BC上,且PB=PE

提示:先证明△BPC≌△DPC得到PB=PD=PE作PM⊥BC于M,PN⊥CD于点N再证△PEM≌△PND可得(1)PD=PE(2)PD⊥PE

如图,正方形ABCD中,点M是边BC上一点(异于点B、C),AM的垂直平分线

答:过点F作FG⊥AB交AB于点G所以:GF//AD,GF==AD1)因为:∠FGE=∠ABM=90°因为:EF是AM的垂直平分线所以:∠GEF=90°-∠BAM因为:∠BMA=90°-∠BAM所以:

已知正方形纸片ABCD,M.N分别是AD.BC的中点,把BC向上翻折,使点C恰好落在MN上的P点处,BQ为折痕

BN=NCPB=BC=2BN所以,∠PBC=60度,三角形BPC为等边三角形BQ是∠PBC的角平分线,QC⊥BC所以,QP⊥BP角PQB的度数=90-30=60度

如图,有一张面积为4的正方形纸片ABCD,M、N分别是AD、BC边的中点,将C点折叠至MN上

连接PC交BQ于R,∵M、N分别是正方形有边AD、BC的中点,∴MN是正方形的对称轴,∴PB=PC(也可用全等),∵BC=PB,∴ΔPBC是等边三角形,∴∠ACB=60°,∴∠QBP=∠QBC=30°