正态总体N(u,)的一个样本,相关系数为-1 (n-1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:56:55
哎呀,这是考验真题,你没答案么?我记得是零几年的考研数一原题,你去找找答案吧?我这给你打也太麻烦点了再问:�ܸ��ҽ���˼·ô��ʲôһ��һ��再答:�Ҽǵ��кü��ַ��������õ����
再问:请问Var是什么啊?再答:方差呀
服从卡方分布,可以从x2的定义中知道,自由度为6,因为从x1到x6c的值不太清楚.
EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516
样本容量10样本均值9.9样本标准差4.04007抽样均方误差1.277585置信度0.95自由度9t分布的双侧分位数2.262157允许误差2.890098置信区间下限7.009902置信区间上限1
服从卡方分布.χ²√c(x1+x2+x3)属于标准正态分布D(√c(x1+x2+x3))=3cσ²=1c=1/3σ²自由度为2.再问:c前面那个符号是什么??再答:根号√
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f
因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
总体正态,方差未知,符合t分布数学符号我不会搞,剩下的自己查书吧,很简单,或者明天我来给你做
样本均值X0~N(4,25/n)那么√n(X0-4)/5~N(0,1)P(2=24.01所以n至少为25再问:帮我再看看这个随机变量X服从均值为3,方差为σ^2的正态分布,且P{3
-1.96*3.46/2.83
fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,
是独立的.如果不独立的话,T分布的定义无从谈起
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
(1)如果对任意的n,有Xn+1=Xn+2计算X2=(5)X3=(7)X4=(9)①根据上面一小题的结果,请试着把Xn用n表示出来:Xn=(2n+1)②计算X2004=(2009)(2)如果对任意的n
样本标准差为3.3,样本数为20,所以总体均值的标准差为:3.3/根号20=0.737995%置信区间为:Mean-1.96*SE