正态分布,求1.Y=e^x的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:07:47
正态分布,求1.Y=e^x的概率密度
两个独立的随机变量 X 与Y 都服从标准正态分布,求 Z=X+Y 的概率密度.

用卷积公式求得Z的概率密度函数,配方太麻烦所以提到最前面写.与x无关的项作为“系数”提到关于X的积分外面,然后构造关于x的正太分布密度函数积分,积分结果=1,积分号以外的“系数”就是要求的结果,为目标

概率论问题求问.1比如X Y都服从某正态分布求Z=2X+3Y服从什么样的正态分布?2XY相互独立D(X)=4 D(Y)=

问题1你计算一下Z的期望和方差就行因为正态分布两个参数的意义就是期望和方差,所以问一个随机变量是什么杨的正态分布其实就是问他的期望和方差是多少的问题问题2方差的性质如果XY相互独立则D(aX+bY)=

X Y是独立变量 且都服从标准正态分布 求E{X^2/(X^2+Y^2)}

2X^2/(X^2+Y^2)服从F(1,2)所以,所求期望为F(1,2)的期望的一半.

有没有概率高手,设XY相互独立都服从标准正态分布.令E=X+Y;n=x-y,求E(e);E(n);D(n);D(n);P

1)E(ξ)=E(X+Y)=E(X)+E(Y)=0+0=0;2)E(η)=E(X-Y)=E(X)-E(Y)=0-0=0;3)D(ξ)=E[ξ-E(ξ)]²=E[X²+2XY+Y&#

请教一道概率论的题已知独立的X,Y都满足标准正态分布,求E(X^2/(X^2+Y^2))

E(X^2/(X^2+Y^2))+E(Y^2/(X^2+Y^2))=E1=1,又E(X^2/(X^2+Y^2)=E(Y^2/(X^2+Y^2),所以就是0.5

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量Z=X/Y的概率密度.

联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z

设随机变量X与Y相互独立,且都服从标准正态分布,令ζ=X+Y,η=X-Y.求:(1)E(ζ) ,E(η),D(ζ),D(

1)E(ξ)=E(X+Y)=E(X)+E(Y)=0+0=0;2)E(η)=E(X-Y)=E(X)-E(Y)=0-0=0;3)D(ξ)=E[ξ-E(ξ)]²=E[X²+2XY+Y&#

设x服从正态分布,Y服从均匀分布u(-h,h),x,y相互独立,求z=x+y的概率密度函数

FZ(z)=P{Z再问:可是答案是{Φ[(z+h-μ)/σ]-Φ[(z-h-μ)/σ]}/2h再答:我第一行做错了。FZ(z)=P{Z

已知随机变量X服从正态分布,求Y=e^X的概率密度

设Y的分布函数为F(y),X的密度函数为g(x)则F(y)=P(Y

设x服从标准正态分布,求:1,x的概率密度,2,Y=x平方的概率密度

1,X的密度函数f(x)=1/√(2π)*exp(-x^2/2)2,设y>0P(Y≤y)=P(-√y≤X≤√y)=1/√(2π)*积分(-√y到√y)exp(-x^2/2)dx=2/√(2π)*积分(

设随机变量X的分布函数为F(X)=0.3Φ(x)+0.7Φ((x-1)/2),Φ(x)为标准正态分布函数,求E(X)

期望是0.7,可以利用标准正态分布的期望是0来计算.经济数学团队帮你解答,请及时评价.

这道概率与统计谁会?设随机变量X,Y相互独立,均服从正态分布N(0,1),Z=X-Y,求E|Z|及D|Z|的值.

回答:Z服从正态分布N(0,2),|Z|“半正态分布”(Half-NormalDistribution).套用标准公式E(|Z|)=√2√(2/π);D(|Z|)=2[1-(2/π)].

求概率题的解答方法.1.设(X,Y)服从二项正态分布N(0,1,4,9,1/2),W=2X+Y,V=X-3Y,求(W,V

EW=E(2X)+E(Y)=2EX+EY=1EV=EX-E(3Y)=-3DW=D(2X)+D(Y)+2cov(2X,Y)=4DX+DY+4*cov(X,Y)=37DV=DX+D(3Y)-2cov(X,

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

急求数学高手二维正态分布联合密度f(x,y)=(1/2π)e^-(x^2-xy+y^2/2),求关于y的边缘密度函数

1/(2*sqrt(pi))*exp(-1/4*y^2)再问:感谢你的回答!!!我不是要答案我书上有答案,这个有简单方法吗,还是就是求他的积分,如果是求积分是怎么求的你给的答案我明白,就是不知道怎么化

已知总体Y服从正态分布N(u,1),且Y=lnX,求X的期望E(X)

E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)

概率论求解答.设随机变量X服从标准正态分布,求随机变量Y=1-2|X|的分布密度.

再问:为什么那里要加绝对值?再答:公式。针对单调增和单调减

设随机变量X与Y独立,X服从正态分布N(μ,σ^2 ),Y服从[-pi,pi]上的均匀分布,求Z=X+Y的密度函数

fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)