正定矩阵一定是严格对角占优的吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:02:25
线性代数范围内是的这是因为矩阵的正定来自于二次型的正定而二次型的矩阵都是对称矩阵所以正定矩阵是对称矩阵
假定A经过一步消去变成B,利用B(i,j)=A(i,j)-A(i,1))A(1,j)/A(1,1),直接验证严格对角占优阵的定义即可.没什么技巧,大概推4-5行就可以了,耐心点.
不一定,比如负三阶单位矩阵
不一定.再问:比如说,,,,再答:1239
对的.因为就是在对称矩阵的范围内讨论一个矩阵是不是正定的.
你看看正定矩阵的定义,前提就是一个对称矩阵!再问:没有说再答:你看看书本的定义!!!一个n×n的实对称矩阵M是正定的当且仅当对于所有的非零实系数向量z,都有zTMz>0
在大学线性代数教材范围内,可认为正定矩阵都是对称矩阵因为对正定矩阵的研究起源于对实二次型的研究,矩阵是对应二次型的矩阵,所以是对称的.对复数域上的正定矩阵,是共扼对称之后又引入了广义正定矩阵,且分有几
证明如下:我最近也对对角占优矩阵有兴趣,你有什么问题可以再问.
请看图片\x0d\x0d\x0d\x0d有什么问题希望及时反馈
这不是已经很显然了吗由条件已经知道00如果B(1)0得在(0,1)上存在一点c使得B(c)=0,矛盾
线性方程组的系数矩阵是严格对角占优矩阵,那么用高斯消去法求解该方程时不需选主元,能确保它的数值稳定性,另外,用简单迭代法或SEIDEL迭代法求解该方程时,算法收敛.
线性方程一般不用迭代法解,用矩阵的分解,如高斯法等来解的.有什么问题可以一起讨论!我的Q515765279.
..,n的一个值有对角元的绝对值与其它非对角元的绝对值的行和相等之外,其余都是对角元的绝对值严格大于号其它非对角元的绝对值的行和,则A是非奇异矩阵.
不必须,例如所有满足对角线元素都是正数的对角矩阵都是对称正定的
正定矩阵与特征值全正是等价条件,为什么就不能说“矩阵主对角线上的因子全为正数是特征值全正的必要条件”“A是B的充要条件”,现在我强调必要性,不提充分性,我说“A是B的必要条件”就错了?“A是B的必要条
这是清华大学的一个教案,你看一下里面关于圆盘定理的部分就清楚了.再问:�Ƕ���5.11�ģ�2��ô����ʾû����˵��֤���������Ȥ�Ķ����ˡ���再答:�Ƕ���5.11��1
未必,还必须是实对称阵.
如果A的每个对角元的绝对值都比所在行的非对角元的绝对值的和要大,即|a_ii|>sum{j!=i}|a_ij|对所有的i成立,那么称A是(行)严格对角占优阵.如果A'是行严格对角占优阵,那么称A是列严
n阶方阵A,如果其主对角线元素的绝对值大于同行其他元素的绝对值之和,则称A是严格对角占优的
不可约:不能化成两个方阵其他位置为0的矩阵;即1100011000001110011100111对角占优:每行对角线元素绝对值大于剩余元素绝对值之和.