正四面体p减abc的棱长为a,求相邻两个面所成二面角的余弦值过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:04:56
正四面体p减abc的棱长为a,求相邻两个面所成二面角的余弦值过程
在正四面体P-ABC中,M为棱AB的中点,则PA与CM所成角的余弦值是多少

过点M作MN‖PA,交PB与N点,设四面体的棱长为1则CN=CM=(√3)/2,(正三角形PBC和ABC的高)MN=1/2利用余弦公式a²=b²+c²-2bc*cos∠A

已知正四面体的棱长为根号3,求外接球和正四面体的体积

外接球R=4分之(3乘以根号2)正四面体体积=4分之根6

如图,正四面体ABCD的棱长为6,P,Q分别是AC的中点、AD的三分之一点,

1:5.S△APQ:S四边形PQCD=上下体积比(高相同),S△=(1/6)*S△ACD(用公式S=ab*sinC/2.)

正四面体的高怎麽求,我看百度百科当正四面体的棱长为a时,一些数据如下:高:√6a/3.中心把高分为1:3两部分.表面积:

根号6/3L作高,高与底面交于底面三角形的垂心,因为正四面体,三线合一,哪个心都一样,在底面作底面三角形的高,算出为根号3/2L,还是三线合一,高与地面交点也为重心,长度比2:1,你自己画个正三角形的

棱长为4的正四面体P-ABC,M是PC的中点,则AM与平面ABC所成角的正弦值为多少?

设棱长为a,(与具体长度无关系),作高PH,连结CH,交AB于D,取CH中点E,连结ME,AE,H是三角形ABC重心,CD=√3a/2,CH=2CD/3=√3a/3,PH=√(PC^2-CH^2)=√

已知正四面体ABCD的棱长为9,点P事面ABC上的一个动点,满足点P到面DAB,DBC,DCA的距离成等差数列,

设距离为h1,h2,h3,每个面面积为S高为h=3根6根据体积分开算和一起算可以得到S*h=S*h1+S*h2+S*h3,得h1+h2+h3=h=3根6,由于为等差数列,必有一个为根6,另外两个和为2

正四面体棱长为a,求其外接球和内切球的表面积.要详细过程,谢谢!

这好像是初中的题目吧,都五六年了,我有点记不得了正三角的中心,做高经过中心有个比例是3:1,那么正四面体的外接球的半径与其一面外接圆半径的比例应该为3:2吧?!外接球半径除以3是内切球半径吧?!知识点

在棱长为a的正四面体中,相对两条棱所成角的大小为

呵呵我刚才刚好做了一道题是证明这两条棱垂直的相对两条棱所成角的大小为90°证明如下过A在面BCD作投影点A'连接AA',BA'由于是正四面体,延长CA'交CD于F点,即CD中点BCD为正三角形所以BF

正四面体ABCD的棱长为1,E是△ABC内一点,点E到边AB,BC,CA的距离之和为x,

设正△ABC边长为a,高为h,E到边AB,BC,CA的距离分别为h1,h2,h3,连结EA,EB,EC因为S△ABC=S△EAB+S△EAC+S△EBC所以ah/2=ah1/2+ah2/2+ah3/2

棱长为a的正四面体的内外接圆半径,求详细过程

应该是外接球和内切球,不是圆.设正四面体P-ABC,作PH⊥底面ABC,垂足H,作CD⊥AB,H在CD上,H是正三角形ABC的外(内、重、垂)心,CH=2CD/3=(a√3/2)*(2/3)=√3a/

已知正四面体ABCD的棱长为a,求此正四面体地高及体积.

正四面体重心到三角形顶点距离为2/3*(根号3/2)*a=根号3/3*a正四面体h=根号[a^2-(根号3/3*a)^2]=根号6/3*a底面正三角形面积S=根号3/4*a^2体积V=S*h/3=(根

一个正四面体棱长为a,求他的内切球和外切球的体积.

希望你把内切球和外接球半径的结论和推到过程识记下来.内切球12分支根号6倍的a,外接球4分支根号6a,记住结论,你就能顺利解题了

正四面体ABCD的棱长为1,棱AB//平面a,正四面体上的所有点在平面a内的射影形成的图形面积的取值范围是多少

解析:这个问题单凭想象求解难度不小,但若能借助正方体这个模型,便能感受到小小模型的巨大威力.将正四面体放入正方体中,使其四个顶点与正方体的四个顶点重合.正四面体的棱长为1,则相对的两条棱互相垂直,且距

正四面体A-BCD的棱长为4,BD中点为P,CD上一点E,CE=1,求点P到平面ABE的距离

四面体ABEP的体积=Sabe*Hp=Sbpe*Ha;Sabe:三角形abe的面积;Hp:p到平面ABE的距离;Sbpe:三角形bpe的面积;Ha:a到平面bpe的距离;易知:Sbpe=(3/8)*S

关于空间几何的小问题所有棱长都相等的三棱锥叫做正四面体,正四面体ABCD的棱长为a.M,N分别为棱BC,AD的中点,则M

∵三棱锥ABCD为正四面体∴每个面为正三角形,连接AM,则AM为边BC上的高AM=a×Sin60°=√3/2a,同理,MD=√3/2a∴△AMD为等腰三角形∴MN为底边AD上的高,MN^2=AM^2-

正四面体P-ABC的棱长为3cm,D,E分别是棱PA,PB上的点,且PD=1cm,PE=2cm,求棱锥P-DEC的体积

以PBC为底,A为顶点,可得A高(4根号6/3)PD=1CM,AD=2CM,所以以PBC为底,D为顶点,D高(4根号6/9)PBC面积为4*2根号3/2=4根号3PE=2CM,EB=1CM,所以PEC