正交矩阵的行列式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:14:55
题目应该是哪里抄错了,下面构造例子说明这一点.设2阶矩阵C(t)=[cos(t),sin(t);-sin(t),cos(t)],可知C(t)正交且|C(t)|=1.对n=3,考虑3阶分块矩阵A=[-1
正交矩阵有性质AA'=A'A=E;所以|AA'|=|E|;即|A||A'|=1,又|A|=|A'|所以|A|^2=1|A|=1或-1
设A是正交矩阵则AA^T=E两边取行列式得|AA^T|=|E|=1而|AA^T|=|A||A^T|=|A||A|=|A|^2所以|A|^2=1所以|A|=1or-1.
A*(AT)=E两边取行列式,由于A与AT行列式相等,则|A|^2=1注:AT是A的转置
解:由已知A,B均为n阶正交矩阵所以AA^T=A^TA=E,BB^T=B^TB=E且正交矩阵的行列式等于1或-1因为|A|+|B|=0所以|A|,|B|必为一正一负所以|A||B|=-1所以|A^T|
因为A为正交矩阵所以AA^T=E两边取行列式得|AA^T|=|E|即有|A||A^T|=1所以|A|^2=1所以|A|=1或-1.
因为正交变换不改变空间里面向量的长度所以特征值是+-1
A是正交矩阵即:|A乘A转置矩阵=单位矩阵E|A||A|=1|A|2=1|A|=正负1
±1再问:怎么算?再答:
1.若A为正交矩阵,则A^(-1)也为正交矩阵;2.若A、B为同阶正交矩阵,则AB也为正交矩阵;3.若A为正交矩阵,则det(A)=±1.
首先,当n>1,关于伴随矩阵的秩,有如下结果:若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;若r(A)证明:当r(A)=n,有A可逆,|A|≠0.于是由A*A=|A|·E可得
/>因为A是正交矩阵所以A(A^T)=E两边取行列式得:|A||A^T|=1又|A^T|=|A|所以|A|²=1得|A|=±1答案:|A|=1或-1
ABCD=|A||D-CA^-1B|其中A为可逆方阵当A可逆时,第1行乘-CA^-1加到第2行得AB0D-CA^-1B注(1):若AC=CA,则上式=|AD-CB|注(2):若A不可逆,且AC=CA,
正交矩阵的行列式等于1或-1所以原式等于∥A|^4=1
由已知,|A+E|=|A+AA^T|=|A||E+A^T|=-|E+A|所以|A+E|=0所以-1是A的特征值
可用行列式的性质如图证明.经济数学团队帮你解答,请及时采纳.
|A|=|A^T|是行列式的性质,行列式的行列互换,行列式的值不变.再答:
-1若矩阵A的特征值为λ,则A的转置的特征值也为λ,而A的逆的特征值为1/λ.矩阵的转置即为矩阵的逆,即:λ=1/λ,所以:λ=1或-1.即正交矩阵的特征值为1或-1又行列式等于-1,所以-1一定是A
答案是肯定的.设A为正交矩阵,则AA'=E,(A^2)(A^2)'=AAA'A'=A(AA')A'=AEA'=AA'=E,因此A^2仍是一个正交矩阵.再问:谢谢啦!再答:不用谢〜