正交尺寸
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:55:27
其实很简单,如下所述
正交向量组是一组非零的两两正交(即内积为0)的向量构成的向量组正交矩阵A是满足AA^T=A^TA=E的方阵(这是定义)A是正交矩阵的充分必要条件是:A的列向量组是正交向量组,且列向量的长度都是1.(这
正交阵的每行每列都是单位向量看第一列得a=0,看第二行得c=0再看第一行得b=-1然后d=0e=-cosθ当然,如果你要硬碰硬地去算AA^T=A^TA=I结果也是一样的,只是麻烦一点而已再问:e=-c
定义1n阶实矩阵A称为正交矩阵,如果:A×A′=I则下列诸条件是等价的:1)A是正交矩阵2)A×A′=I为单位矩阵3)A′是正交矩阵4)A的各行是单位向量且两两正交5)A的各列是单位向量且两两正交6)
解题思路:考查空间向量的运算解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
这个麻烦请稍候...再答:解:|A-λE|=1-λ242-2-λ2421-λr1-r3-3-λ03+λ2-2-λ2421-λc3+c1-3-λ002-2-λ4425-λ=-(3+λ)[(-2-λ)(5
正交最早出现于三维空间中的向量分析.在3维向量空间中,两个向量的内积如果是零,那么就说这两个向量是正交的.换句话说,两个向量正交意味着它们是相互垂直的.向量α与β正交,记为α⊥β.
直线轴网又包括双向轴网和单向轴网.直线双向轴网就是正交轴网.正交轴网适用于画相互垂直的轴网.正交就是两个方向是垂直相交.
A是一个n阶方阵,A'是A的转置如果有A'A=E(单位阵),即A'=A逆我们就说A是正交矩阵
再答:不是两个矩阵相等再问:谢谢明白再答:
1.若A为正交矩阵,则A^(-1)也为正交矩阵;2.若A、B为同阶正交矩阵,则AB也为正交矩阵;3.若A为正交矩阵,则det(A)=±1.
A为正交矩阵,∴A*A‘=E(E为单位矩阵)∴|A|*|A’|=|E|=1∴|A|²=1∴|A|=1或-1再问:看不懂啊,A一撇是什么意思,能不能写纸上,照个相呢。再答:A一撇表示A的转置
所谓的正交一定是在一定的线性空间内相互垂直的两个量.也就是两个向量的内积是0.在线性代数中,正交经常被提起.高数中我记得大概只是傅立叶分解用到.这个的内积并不一定是传统意义上的内积,傅立叶分解内积实际
正交频分复用的基础是离散傅里叶变换.回顾一下离散傅里叶变换的数学原理:傅里叶级数的系数是怎么求出的?它是采用不同频率的三角波乘以原函数来求出傅里叶系数的.这是因为两个三角波(比如正弦函数)当它们频率相
理想情况下所有载波都是正交的,如果从频域上观察会发现当一个频率的波处于波峰时其他频率的波的峰值为零或着很小.你所说的交叉点是不是指重叠部分?那个重叠部分正是它的特点,可以有效的减小码间干扰,提高频带利
你说的是二次型的标准型吧:Y=(y1,y2,y3)^TX=(x1,x2,x3)^T=PYX^TAX=Y^TP^TAPY知道对称矩阵A,求出A的特征值,特征向量,然后正交化,单位化,再拼成正交矩阵P.就
答案是肯定的.设A为正交矩阵,则AA'=E,(A^2)(A^2)'=AAA'A'=A(AA')A'=AEA'=AA'=E,因此A^2仍是一个正交矩阵.再问:谢谢啦!再答:不用谢〜
如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵,若A为单位正交阵,则满足以下条件:1)AT是正交矩阵2)(E为单位矩阵)3)A的各行是单位向量