正三角形abc边长为2,AE BE=2,AD DC=1 2,BD交CE于点F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:54:57
正三角形abc边长为2,AE BE=2,AD DC=1 2,BD交CE于点F
在如图所示的几何体中,三角形ABC是边长为2的正三角形,AE大于1,AE垂直平面ABC,平面BCD垂直平面ABC,BD等

在如图所示的几何体中,△ABC是边长为2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.(1)证明:AE∥平面BCD;(2)证明:平面BDE⊥平面CDE;(3

在如图所示的几何体中,三角形ABC是边长为2的正三角形,AE>1,AE垂直平面ABC,平面BCD垂直平面ABC,BD=C

在如图所示的几何体中,△ABC是边长为2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.(1)证明:AE∥平面BCD;(2)证明:平面BDE⊥平面CDE;(3

已知三角形ABC是边长为2a的正三角形,那么它的平面直观图的面积是(  )

由三角形ABC是边长为2a的正三角形,三角形的面积为:34(2a)2=3a2;因为平面图形的面积与直观图的面积的比是22,所以它的平面直观图的面积是:3a222=64a2.故选C.

三棱锥P--ABC的底面是边长为2的正三角形,侧棱长均为4/3根号3.求PA与平面ABC所成的角.

因PA=PB=PC,底面是正三角形,三棱锥P-ABC是正三棱锥,作PO⊥底面ABC,则O是三角形ABC的重(外、内、垂)心,AB=2,AO=2*(√3/2)*2/3=2√3/3,〈PAO就是PA与平面

在三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥体积为

/>正三角形的高是2*(√3/2)=√3底面的面积S=2*√3*(1/2)=√3所以,体积=S*PA/3=√3*3/3=√3

已知三棱柱ABC-A1B1C1的底面是边长为2的正三角形.侧棱AA1垂直底面ABC,A1A=3,Q为A1B1的中点.P为

1.取AB中点M,连接PM,CM,角PMC为二面角P-AB-C的平面角,CM=根号3,二面角P-AB-C为30°PC=12.AB⊥QC,要使直线QC垂直平面ABP,QC⊥BP,过Q做QN⊥B1C1,垂

1.正三角形ABC的边长为2,高为h,h可能是分数吗?为什么?

事实上,这两个问题不仅要给出答案分别为√3与√13,还要证明它们不能表示成分数(即整数与整数的比)下证√3不是分数:若√3是分数,不妨把这个分数约至最简后写成b/a,此时b,a互质,否则若它们不互质,

三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于______

三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,所以底面面积为:3;三棱锥的体积为:13×3×3=3故答案为:3

如图,正三角形ABC外接圆的半径为R,求正三角形ABC的边长,边心距,周长和面积.

正弦定理a/sinA=2R(R为外接圆的半径)边长为aa=2R*sin60°=√3*R边心距d是外接圆半径的一半d=R/2周长=3√3*R面积S=3*边长*边心距/2=3√3*R^2/4

1、已知正三角形ABC外接圆的半径为R,求正三角形的边长、边心距、周长和面积.(全班过程)

连接圆心O和A点成OA,过O点作垂线垂直于AB,垂足为D由题得OA平分∠BAC,D为AB的中点在△OAD中,∠BAO=30°,∠ODA=90°,∠DOA=60°OA=R,所以OD=R/2;DA=R*√

已知三角形ABC的平面直观图三角形A'B'C'是边长为2的正三角形,那么三角形ABC的面积为多少?

平面直观图的坐标系夹角为45°,y的长度为原长度的1/2.正三角形从一个角作对边的垂线,以该边为x轴,以垂足斜45°为y轴那么可以求出顶点的坐标是(-根号3,根号6)那么可以知道原来顶点坐标是(-根号

在边长为2的正三角形ABC中,以A为圆心,3

已知如下图示:S△ABC=12×2×3=3,阴影部分的扇形面积,S扇=60360π•32=π2,则豆子落在扇形ADE内的概率P=S扇S△ABC=π23=3π6,故答案为:3π6.