概率收敛与数列收敛概念有何异同
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:00:48
收敛的数列{Sn}必定有界.因为|Sn-s|a)--->-e
设数列Un,级数∑Un,再设级数∑Un的前n项的和为Sn,则数列收敛是指Un的极限LimUn存在;级数收敛是指Sn的极限LimSn存在.这对于数列Un来说,【区别】就是“极限LimUn存在”与“极限L
我觉得你没有理解数列极限的研究对象,对于无穷多项的数列,我们才可以求它的极限,讨论它的敛散性,对于有限项的数列我们是不定义其极限的,自然更谈不上子数列,收敛等问题了,数列极限的表达式limxn如果写全
本质就是收敛数列一定有界,(反证,假设无界,肯定不收敛)有界数列不一定收敛,(反例,数列{(-1)^n}是有界的,但它却是发散的.)额,没看清楚你写的是收敛函数,我的回答只是针对数列本质的不同数列的收
如果你取一个数列an=1/n,它显然收敛,而且最大值在n=1的地方.可以补充这么一个看起来很怪异,但是细细一想又很显然的引理:对于给定的数列,假若任给一个实数p,总存在一个正整数N,使得|aN|>p,
数列是指正整数趋向无穷大.比如说sin(2*pi*n)是一个数列的话就是收敛的,因为他的每一项都是0sin(2*pi*x)如果是一个函数的话明显不收敛
首先要搞清楚有界和收敛的概念数列收敛是说它的极限是a,即无限趋近于a.数列有界是说它的值域控制在一个确定的范围内.反例:当有界数列{Xn}为摇摆数列时,如0,1,0,1,0,1,0,1…………时相乘后
不是啊,收敛函数都是有界的.
举个很简单的例子即可:1,-1,1,-1,1,-1,.有界而不收敛.再问:再问:第一题第(3)小题再答:ax+b=a(x-1)所以极限=a=2b=-a=-2再问:这是用的什么方法呢,老师。怎么没见过?
随机变量本质上是一个实值函数,所以它的收敛应该和函数列的收敛去比较.
是的.根据收敛定义就可以知道,对于数列an存在一个数A,无论给定一个多么小的数e,都能找到数字N,使得n>N时,所有的|an-A|
就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性.从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛
数列的极限是A再问:数列的发散呢再答:就是没有极限
依概率收敛是对于随机变量来说的.一个随机变量序列(Xn)n>=1依概率收敛到某一个随机变量X,指的是Xn和X之间存在一定差距的可能性将会随着n的增大而趋向于零.而函数收敛是对于函数来说的.是对于任意的
1.T,用定义定理等易证.2.T,可直接从定义考虑.3.F,前者是数列,后者代表求和4.F,an=0,bn=1,0,1,1…5.F,an=0,1,0…bn=0,-1,0,…1.T,定理.2.F,对于英
要使有界数列收敛的充要条件就是极限存在的充要条件级数Sn:对任意ε>0,存在N,使得当n>N时,|Sn-A|
1,-1,1,-1,1,-1.该数列有收敛子列,但本身不收敛.
级数是数列无穷项和级数收敛,数列通项一定收敛数列收敛与之对应的级数却不一定收敛典型的像Σ1/n与1/n
在传统的数学分析中,数列和级数没有很本质的区别.对于级数而言,定义部分和序列S(n)=a(1)+a(2)+...+a(n),那么传统的级数的收敛性就是按照部分和序列的收敛性来定义的.而对于数列{a(n