椭圆点P处的切线PT平分△PF1F2在点P处的外角证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:54:51
椭圆的切线没有别的方法啦,只能用你那种方法,要是圆的话,可以有两种.圆还可以用圆心到直线的距离与半径大小来比较.做这道题,先画图,你可以发现有两条切线,并且有一条的斜率不存在所以你设直线y=k(x-2
连结PC设PT=PO=m圆的方程可化为(x-2)^2+(y-3)^2=1则PC=根号(m^2+1)由OP+PC=m+根号(m^2+1)>=OC=根号13故m>=6根号13/13此时P在OC上kOC=3
由以F2为圆心且过椭圆中心,可知圆的半径OF2=PF2=c点P在椭圆上,由椭圆第一定义可知PF1+PF2=2a所以PF1=2a-PF2=2a-c又因为直线F1M与圆F2相切,可知三角形F1PF2为直角
如图所示,设椭圆的左焦点为F′,∵以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,∴切点E为PF的中点,OP=OF=OF′,∴FP⊥F′P.设|PF|=n,|PF′|=m,则m+n=2a,m2+n
很高兴为您解答,【学习宝典】团队为您答题.请点击下面的【选为满意回答】按钮,
再问:公式那就不懂了,公式怎么来的再答:圆与圆锥曲线的综合再问:为什么要2a-2根号c2-b2=2b?
左焦点F1在直线PT上的射影为H,延长F1H交F2P于点Q,可以证明PT垂直平分线段F1Q,从而QP=F1P、F1H=HQ,根据椭圆定义,PF1+PF2=2a,而QP+PF2=PF1+PF2=2a,即
左焦点F1在直线PT上的射影为H,延长F1H交F2P于点Q,证明PT垂直平分线段F1Q,从而QP=F1P、F1H=HQ,根据椭圆定义,PF1+PF2=2a,而QP+PF2=PF1+PF2=2a,即QF
用余弦定理,|F1F2|=2√7,cos∠F₁PF₂=(16+4-28)/(2×4×2)=-1/2,∴∠F₁PF₂=120º.
【1】请画一个图.可设椭圆方程为(x/a)+(y/b)=1.(a>b>0).F(-C,0)为左焦点.P点在椭圆上,线段PF的中点为M,则PM=FM,圆x+y=b与线段切于点M,则MO=b,又显然有FO
看【古希腊】阿波罗尼的《圆锥曲线论》.这是我自己想的:先给出以下引理:如图所示,点P在直线l上运动,定点A,B在l的异侧,求证:当|AP﹣BP|最大时,l平分∠APB证明:作B关于l的对称点B'
证明方法一:作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y,BP=X,CE=Z,可得PC=Y-X.tan∠BAP=tan∠EPF=XY=ZY−X+Z,可得YZ=XY-X2+XZ,即Z(
记线段PF1的中点为M,椭圆中心为O,连接OM,PF2则有|PF2|=2|OM|,2a-2c2−b2=2b,a-2c2−a2=a2−c2,1-2e2−1=1−e2,解得e2=59,e=53.故选A.
看来你只要截距的概念."直线与x轴交点的横坐标叫做直线在x轴上的截距,又叫做横截距;直线与y轴交点的纵坐标叫做直线在y轴上的截距,又叫做纵截距."例如,对于直线y-y0=(-b^2/a^2)*(x0/
点P是在椭圆上吧?这个我可以跟你说一下方法,写出来太麻烦,不好意思,先建立坐标系,长轴所在为x轴,长轴垂直平分线为y轴,设出椭圆方程,设点P(x1,y1),点H(x0,y0),F1(-a,0),F2(
1).如果焦点在y轴上,则现有的条件解不出来.2)焦点在x轴上的话,设椭圆方程为x^2/a^2+y^2/b^2=1,令F坐标(c,0),其中c^2=a^2-b^2根据题意,在直角三角形PFO中,PM=
数学公式只能用word当,参见附件
x^2/8+y^2/2=12x/8+2yy'/2=0y'=-x/(4y)设P坐标是(m,n),则切线的斜率k=y'=-m/4n故切线方程是y-n=-m/(4n)*(x-m)令X=0,得到y=n+m^2
设直线为y+1=k(x-2),联立方程两交点中点用韦达定理求出结果为:x-2y=4
证明:不失一般性,设椭圆方程为x^2/a^2+y^2/b^2=1(a>b>0),交点分别为F1(-c,0)、F2(c,0).不失一般性,设不与F1F2共线的椭圆第一象限上任意一点P(x0,y0),则有