梯形上下底中点,两对角线交点,两腰所在直线交点共线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:01:26
设这个梯形为ABCD,AB//CD,对角线AC、BD交于点E,BC的中点为F,FE垂直于AD于点G.因为角BEC=90度,所以FB=FE,于是角CBE=角FEB=角DEG=90度-角ADB=角CAD,
如图,过D点作AC的平行线交BC的延长线于E点,∵AD∥BC,∴四边形ACED为平行四边形,AD=CE=1,AC=DE=3,在△BDE中,BD=4,BE=BC+CE=5,∵BD2+DE2=42+32=
面积是6只要作一条辅助线和一条对角线平行,交上底的一个点,另一点交下底延长线一点,这样构成一个直角三角形,两直角边为3和4,斜边为5这样算出三角形面积为6也就是梯形面积
已知梯形ABCD,DC‖AB,E,F分别为CA,DB的中点.求证EF‖AB,且,EF=1/2(AB-DC)证明:过C点作CG‖DA交AB于G,取GB的中点为H,连接FH.DC‖ABCG‖DA所以AGC
连左腰中点E和对角线中点O,并延长交右腰于F因此,EO//上底而上底//下底所以,OF//下底因为O是中点,所以,F也是中点即:梯形两腰中点和两对角线中点共线
如图:梯形等腰梯形ABCD中,AB‖DC,AD=BC,E、F、G、H分别为AB、DB、DC、AC的中点求证:EFGH为菱形证明:∵E、F分别为AB、DB的中点∴EF为△ADB的中位线∴EF‖AD,EF
是.因为梯形是有两个三角形组成的那是两边中点的连线
是菱形.证明:设等腰梯形ABCD,AD∥BC,AB=DC,E、F、G、H分别是AD、BD、BC、AC的中点,∴EF是△ABD的中位线,∴由中位线定理得:EF=?AB同理:EH=?DC,FG=?DC,G
设梯形ABCD,AD‖BC,对角线AC,BD相交于O则s△ADO=m,s△BCO=n由同底等高的三角形面积相等得s△ABC=s△DBC所以s△ABO=s△DCO设s△ABO=s△DCO=s又s△ABO
你看,只要平移一对角线就好了.证明△ABC≡△DEB后梯形面积就成了三角形CBE面积了,而且BE=4,坐高,一下就出来了.
过梯形一对角线的顶点作另一条对角线的平行线,则以a、b为直角边的三角形的斜边长即为梯形上下底长之和,即其长为√(a^2+b^2)
梯形两腰中点连线是梯形的中位线,平行于两底,并且等于两底和的一半.证明 四边形ABCD是梯形,AD∥BC,E、F分别是AB、CD边上的中点,求证:EF∥AD,且EF=(AD+BC)/2证明:梯形中位
证明:连接DF并延长,交BC于点G∵AD‖CG∴∠DAF=∠ACG,∠ADG=∠CGF∵AF=CF∴△ADF≌△GCF∴AD=CG,DF=FG∵E是BD中点∴EF是△DBG的中位线∴EF‖BC,&nb
梯形ABCD中,AD∥BC,BA、CD相交于点G,AC、BD相交于点F,作直线GH交AD于E,交BC于F∵AD∥BC∴AE/BF=GA/GB=AD/BC=AH/HC=EH/HF=ED/BF∴AE=ED
证明:因为EF//CD所以三角形AEO与三角形ADC相似所以EO/DC=AE/AD--(1)同理三角形BOF与三角形BDC相似FO/DC=BF/BC--(2)又由平行线分线段成比例可知AE/AD=BF
用平行线段等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等梯形的上底,下底与中位线平行,这组平行线等分了两腰,即也平分对角线.(两条对角线都被平分,即梯形中位线
将上底平移下来,这样就可以得到一个底边为a的等腰直角三角形,两直角边为√2a/2,直角三角形的面积即是梯形的面积,底面上的高即是梯形的高,这样求出高为a/2
对角线中点的连线长=(8-6)/2=1你把下底延长1个上底的长度,就是把梯形转变成了三角形.对角线中点的连线+上底=三角形的中位线=梯形中位线
首先证其为平行四边形,由定理:三角形两边中点连线平行于第三边可证;再证此平行四边形四边都相等,由定理:三角形两边中点连线等于第三边的一半和题中梯形为等腰梯形可证,由定理:四边相等的平行四边形是菱形可得