e-xy ez=2z所确定的函数z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:08:56
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
对y求导,e^z*z'(y)=xz+xyz'(y),əz/əy=z'(y)=xz/(e^z-xy)
两边微分e^zdz-yzdx-xzdy-xydz=0(e^z-xy)dz=yzdx+xzdy∂z/∂y=xz/(e^z-xy)=xz/(xyz-xy)=z/(yz-y)
x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
令G(X,Y,Z)=F(xy,z-2x)GZ'=F'2GX'=yF'1-2F'2∂z/∂x=-GX'/GZ'=(2F'2-yF'1)/F'2Gy'=xF'1∂z/&
方程两边对x求偏导:yz+xyəz/əx=(z+xəz/əx)e^xz得:əz/əx=(ze^xz-yz)/(xy-xe^xz)方程两边对y
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)
对X的偏导=yz/(e^z-xy)对Y的偏导=xz/(e^z-xy)
先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
your answer here
两边求微分的2xdx+2zdz=2e^zdy+2ye^zdz解得dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)
记p=√(x^2+y^2+z^2),则xyz+p=√2,p=√2-xyz两边对x求偏导得:yz+xyz'(x)+[x+zz'(x)]/p=0得:z'(x)=(-yz-x/p)/(xy+z/p)=-(p
e^(-xy)-x^2*y+e^z=z,令F(x,y,z)=e^(-xy)-x^2*y+e^z-z=0分别对F取x,y,z的偏导数,可得əF/əx=e^(-xy)*(-y)-2xy