E-A行列式=0证A等于E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:08:30
用特征值的性质如图求出一个特征值-9.经济数学团队帮你解答,请及时采纳.再问:可问题问的是A*-E,然后怎么求?再答:A*-E的特征值是A*的特征值-1,也就是-10
|2E-A|=0,则2是A的特征值.|3E+A|=0,则|(-3)E-A|=0,所以-3是A的特征值.A是二阶方阵,只有两个特征值.特征值之积等于|A|,所以|A|=2×(-3)=-6.
(1)由|E-A|=0,得|A-E|=0,得λ1=1由|E+A|=0,得|A-(-E)|=0,得λ2=-1由|3E-2A|=0,得|A-3/2·E|=0,得λ3=3/2故A的特征值为:λ1=1,λ2=
求矩阵的特征值是令行列式|A-λE|=0得到了现在|A+E|=0就相当于λ=-1了
|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|A||E-A|---(E-A^T)^T=E-A=|A|(-1)^(2n+1)|A-E|=-|A||A-E|所以|A-E|(1
|A|E是矩阵的数乘一般情况:A=(aij),则kA=(kaij).即矩阵A中每个元素都乘k所以|A|E=|A|0...00|A|...0....00...|A|
只需证A有特征值是1或-1.设Ax=kx(k为复特征值,x为复特征向量),则x'A'=k'x'(以'表示共轭转置,k'就是k的共轭)两式相乘,得x'x=x'A'Ax=|k|^2*x'x又x'x>0,所
具体的解法在我空间相册里点下面的链接直接进去http://hi.baidu.com/%CE%C4%CF%C9%C1%E9%B6%F9/album/item/9d6b5e191b4f9045dab4bd
因为A^2=A所以A(A-E)=0所以r(A)+r(A-E)=1所以r(A)再问:r(A)是什么,貌似不知道再答:r(A)是A的秩如果没学过秩,可用反证法若|A|≠0,则A可逆再由A^2=A等式两边左
只要证明0是特征值即可.经济数学团队帮你解答.请及时评价.谢谢!再问:问一下再问:a为n维列向量,a∧Ta=1,aa∧T会等于E吗再答:一般不会,r(aa^T)
设α为n维列向量,且α'α=1,矩阵A=E-αα',证明行列式|A|=0.证明:A^2=(E-αα')(E-αα')=E-2αα'+αα'αα'=E-αα'=A所以A(A-E)=0因为A-E=-αα'
由于|E-A|=0,|E+A|=0,|3E-2A|=0,故可知1,-1,3/2,均为A的特征值,由于A为3阶矩阵,故A最多有3个互不相同的特征值,因此A的特征值即为1,-1,3/2,由特征值和矩阵行列
这问题?我有点不敢答了因为A^2+3A-5E=0所以A^2+3A=5E所以A(A+3E)=5E.
由AA^T=2E得|A|^2=2^4=4^2又因为|A|
AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0
由已知|E+A|=0,|2E+A|=0,|E-A|=0可分别得出x1=-1,x2=-2,x3=1是A的三个特征值,而A为三阶矩阵,故只有三个特征值,x1=-1,x2=-2,x3=1是A的全部特征值.从
AE(EB)的行列式=0E(E-BAB)的行列式=E0(BAB-E)的行列式(分A的阶数是奇数和偶数就可以了)=|AB-E|
因为A+2E,A-E,2A-E均不可逆所以A的特征值为:-2,1,1/2所以A²的特征值为:4,1,1/4A²+E的特征值为:5,2,5/4所以|A²+E|=5×2×(5
由条件得A有特征值1和1/2,可对角化.设A为A=PDP^(-1),D=diag(1,1/2),|A*+A^(-1)+2E|=|(1/2)A^(-1)+A^(-1)+2E|=|P((3/2)D^(-1
AB=E说明AB互为逆矩阵,即:B=A^(-1)所以:|A||B|=|A||A^(-1)|所以显然结论成立.