E,F为凸四边形ABCD的一组对边AD,BC的中点,若EF=1 2[AB+CD]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:37:13
相似,因为OE//BC,OF//BC再问:怎么证出来的(还有对角线相等的两个矩形必相似吗再答:一共四个边,两个边重合,两个边平行,必相似对角线相等是什么意思,是长度相等?再问:是的对角线相等的两个矩形
连CG.有向个同底等高的三角形呢.以下直接用字母表示相应图形的面积有DEG=CGE=CGF=GFBADGB=ADCB-ECB-DEG=6*6-3*6/2-(3*6/2)/3=24
因为直线l与四边形ABCD的三边AB,AD,CD分别交与点E,F,G====>l与AB共面;l与AC共面;l与CD共面;====>AD,CD与AB共面;又因为BC与AB交与B,与CD交与C,则同理得B
5平方厘米.把这个四边形分成六个三角形,分别是△ABE,△AEF,△AFD;△BEC,△CEF,△CFD;前三个的面积分别是:(1/3)BE×h;(1/3)EF×h;(1/3)FD×h,EF又为BD的
过A、B两点作BD的垂线,垂足分别是M、N.则三角形ABE、AEF、AFG、AGD的面积都相等.因为E、F、G四等分BD,所以四个三角形底相等,而高都是AM,所以面积相等.同理可证:三角形CBE、CE
证明:只需要证明:点C∈平面ABD.显然:点E∈直线AB,点F∈直线AD∴直线EF包含于平面ABD,而点G∈直线EF,∴点G∈平面ABD,又点D∈平面ABD,∴直线DG包含于平面ABD,而C∈直线DG
设BC中点为G,连接EG、FG.由中位线的性质,EG=1/2*AB,FG=1/2*CD,在三角形EFG中,EF
证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)
将BD连接形成三角形ABD和三角形CBD,分别以B、D点向AD、BC作垂线,很明显,因为E、F分别为AD、BC的中点,所以三角形BED:三角形ABD=1:2;同理,三角形BFD:三角形CBD=1:2.
(得到了个平行四边形的面积FGC空白面积:BC×三分之一H除以2求ABCD面积,即:36×2=72(平方厘米)
连接DF并延长交AB的延长线于G因E、F为中点,EF=1/2(AB+CD)所以EF=1/2*AG所以BG=DCBF=CF,角BFG=角CFD所以三角形BFG全等三角形CFD所以角GDC=角BCD所以A
结论:AB=AF+CF.证明:分别延长AE、DF交于点G.∵E为BC的中点,∴BE=CE,∵AB‖CD,∴∠BAE=∠G,在△ABE与△GCE中,∴△ABE≌△GCE,∴AB=GC,又∵∠BAE=∠E
等腰梯形的对角线相等.故由“E、F、G、H分别是等腰梯形ABCD各边中点”知四边形EFGH是菱形,菱形的面积是其对角线的乘积的一半,而它的对角线恰好又是等腰梯形的高和腰上的中位线;再由梯形的面积计算公
联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以
连接BD,交AC于点O∵四边形是平行四边形∴对角线AC、BD互相平分∴BO=DOAO=OC∵AE=CF∴EO=AO-AEFO=OC-FC∴EO=FO∴四边形BFDE是平行四边形回答完毕,
连接BD,因为E是AD中点,所以S△AEB=S△BDE因为F是BC中点,所以S△DFC=S△BDF所以S△AEB+S△DFC=S△BDE+S△BDF=S四边形BEDF=6所以S四边形ABCD=S△AE
连接FGEHGO1OHEO1OF,发现四边形EGHFEO1FOOHO1G都是平行四边形(证法完全一样,都是一组对边平行且相等,比如GO1平行且等于OH),所以EG=HFOG=HO1OE=FO1,三条边
菱形,对角线垂直就行吧……正方形也是菱形的一种吧……教小孩好用功!赞一下!
四边形ABCD两对角线AC、BD相等
你的题目好像抄错了,E,F分别为AB,AD的中点中的F是H吧?三角形中,对应线段成比例,可以判断出平行.即EH,GF与BD平行.可判断四边形EFGH为梯形.EH=BD/2=3,GF=BD*2/3=4h