根据波尔氢原子理论,电子在各条轨道上运动的能量是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:02:37
1.困难之一:不能解释多电子的情况玻尔的理论只考虑到电子的圆周轨道,即电子只具有一个自由度,因此它对只有一个电子的氢原子和类氢原子的谱线频率作出了解释,对于具有两个或更多电子的原子所发的光谱,这理论遇
因为电子轨道在能级上仍是以驻波形式出现的,这个德布罗意证明过.所以可以理解为仍是对应的.
玻尔喜欢生拼硬凑.玻尔原子模型还没彻底脱离经典思想,电子仍是绕核旋转,但是玻尔说:电子只在特定电子轨道上旋转,只在轨道间跃迁的时候吸收或放出能量,其电磁辐射是一系列离散值其实就是规定:电子旋转的过程中
,量子数n越大,则氢原子能级越高,这是对的.En=E1/(n^2)
氢原子在吸收光子之后,总能量增加,根据ke2r2=mv2r知,轨道半径增大,则电子动能减小,总能量增加,则电势能增加.故D正确,A、B、C错误.故选D.
不能解释氢原子光谱的精细结构不能解释氢原子光谱在磁场中的分裂不能解释多电子原子的光谱
1、电子可以到处运动,虽然不能预测在某一瞬间电子一定会在哪个地方出现,但是可以统计电子在哪个区域出现的可能性大小,这就是概率.2、玻尔理论所说的轨道类似于机械运动的轨道,好像电子绕核沿一定的轨迹旋转运
此讲义的第10~20页
原子核式结构是卢瑟福根据α粒子散射实验现象提出!
都是对的.电子的轨道就是原子的能级.原子的能级直接体现就是电子轨道分层!不过,一般我们都说“原子激发,退激”;“电子跃迁”.
设电子在量子数为n轨道上作圆周运动的线速度为v,半径为r,则可知mv^2/r=e^2/4πε0r^2再应用玻尔角动量量子化条件L=mvr=nh(h是约化普朗克常量不是普朗克常量)联立两式,可解得v=e
显然不是.经典理论中,氢原子中电子的能量是两部分,即动能和势能.有些类似卫星和地球的关系不过经过量子化以后,在电子轨道中,其能量只能取某些定值.远离质子时,相当于原子被电离,此时电子能量相当于电离能加
给你一个粗略的回答:(下式中pi即3.1415...)1.电磁吸引力等于向心力:m*v^2/r=k/r^2(电荷为1库仑)=>频率:v1=[1/(2pi)]*[(k/m)^1/2]*r^(-3/2)估
角动量的量子化呗,一个单位的角动量.从某种角度上来讲,这是玻尔理论的一个假设,即角动量量子化.当然你可以用对应原理和剩下的两个公设,求得出轨道半径、能级什么的,求出r和v,再带入L=rmv来算.
原子的能量减少,电子的动能增加根据玻尔理论原子的能级公式为En=E1/n^2=-13.6eV/n^2,从外层轨道跃迁到内层轨道,量子数由大变小,所以原子的能量减少.原子减少的能量以光子的形式辐射出去.
如果是光子则一份一份的吸收;如果是实物粒子则靠粒子间的碰撞传递(但实物粒子的动能一定要大于能级差,因为碰撞本身就有损耗).
A、根据ke2r2=mv2r知,电子动能增大,电势能减小.当一个氢原子从n=4的能级向低能级跃迁时,轨道半径减小,能量减小,故动能的增加量小于电势能的减少量,故A正确、B错误.C、当一个氢原子从n=4
A、当一个氢原子从n=4的能级向低能级跃迁时,轨道半径减小,能量减小,根据ke2r2=mv2r知,电子动能增大,电势能减小.故A正确,B错误.C、当一个氢原子从n=4的能级向低能级跃迁时,可能放出3种
电子从外层轨道跃迁到内层轨道时,放出光子.电场力做正功,电势能减小.内层轨道半径较小,向心力较大,因此电子速度增大,动能增大.所以B对电子从内层轨道跃迁到外层轨道,吸收光子.电场力做负功,电势能增大.