D是△ABC是等边三角形内一点,BP=AB,∠DBP=∠DBC,判断ABD的形状

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:18:16
D是△ABC是等边三角形内一点,BP=AB,∠DBP=∠DBC,判断ABD的形状
如图,点D是等边三角形ABC内一点,DB等于DA,BP等于AB,角DBP等于角DBC,求角BPD的长

连接CD∵△ABC是等边三角形∴AB=AC=BC,∠ACB=60°∵BP=AB∴BC=BP又∵BD=BD,∠DBP=∠DBC∴△BCD≌△BDP(SAS)∴∠BPD=∠BCD∵AC=BC,CD=CD,

如图,已知D,P分别是等边三角形ABC内,外一点,且DA=DB,AB=BP,∠DBP=∠DBC,求∠BPD的.

分析:作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB

D是等边三角形ABC的边AB上一点,AE∥BC,且AE=BD.求证:△CDE是等边三角形

过D作DF//AC,交BC于F,因为三角形ABC是等边三角形.所以,三角形BDF也是等边三角形所以,在三角形AED和三角形FDC中,AE=BD=DF

如图,D是等边三角形ABC内一点,AD=10,BD=8,CD=6.将△BCD绕点B旋转60度,得到△ABE.求△ABC面

∠EBD=60°,EB=DB,则△BDE为等边三角形,∠BED=60°,AE=CD=6,DE=BD=8,AD=10,AD²=AE²+DE²,则△AED为直角三角形,∠AE

如图,D是等边三角形ABC内一点,DB=DA,BP=AB,∠DPB=∠DBC.求证:∠BPD=30°

连接CD∵△ABC是等边三角形∴CA=CB,∠ACB=60°∵DA=DB,DC=DC∴△CAD≌△CBD∴∠BCD=∠ACD=30°∵BP=BC,∠PBD=∠CBD,BD=BD∴△PBD≌△CBD∴∠

等边三角形ABC中,D是三角形内的一点,DA=DB BE=AB 角CBD=角EBD,求角E的度数

连接CD,延长至AB交AB与F等边三角形ABC中DA=DB则CF为等边三角形ABC的AB边上的垂直平分线又因等边三角形三线合一,则角BCD=30°又因BE=AB,三角形ABC为等边三角形则BE=BC在

等边三角形ABC中,D是三角形内一点,DA=DB,DE=AB,角CBD=角EBD,求角E度数

连接CD∵AD=BD,AC=BC,CD=CD∴△ADC≌△BDC∴∠BCD=∠ACD=30°∵∠EBD=∠CBD,BD=BD,BE=BC∴△BDE≌△BDC∴∠E=∠BCD=30°两次全等,很简单

已知D是等边三角形ABC内的一点,BD=DA,BP=AB角DBP=角DBC 求角BPD

首先,如果BD=DA的话,证明D一定是在AB的中垂线上,因为ABC是全等三角形,又因为PB=AB=BC,BD=BD,角DBP=角DBC,证明三角形DBP和三角形DBC是全等的,角BPD=角BCD,又因

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图一三角形abc是等边三角形,d是三角形abc内一点,将三角形abd绕点a旋转60度得三角形ace连接de,dc可以

将三角形BCP以B为中心旋转,使BC,AB重合得到三角形ABP’全等于三角形BCP则因为∠P’BP=90所以PP’=2根号2A在三角形APP’中A,2根号2A,3A符合勾股定理所以∠APP’=90因为

如图,等边三角形ABC的边长为8,M是三角形ABC内一点,MD//AC,ME//AB,MF//BC,点D、E、F分别是A

延长EM交AC于G,过F作FK∥EM,交BC于K得平行四边形ADMG,所以DM=AG,得平行四边形EMFK,所以ME=FK,在等边三角形MFG中,MF=FG,在等边三角形CFK中FK=FC所以MD+M

      如图点P是等边三角形△ABC内一点,且PA=3,PB=5,

是不是这个啊,将△APC绕A点逆时针转60度,点C与点B重合,点P移动到P',连接PP',∵△AP'B是△APC旋转得到的,∴AP=AP',∠APC=∠AP'B

如图,△ABC是等边三角形,D是三角形内一点若有DA=DB,BE=AB,∠DBE=∠DBC求∠E度数

由已知有BE=AB=BC,角EBD=CBD,BD=BD所以三角形BED与BCD全等所以角E=角BCD因为DA=DB,所以角DAB=DBA正三角形中,角CAB=CBA=ACB=60度,AC=BC所以角C

[八年级数学勾股定理]已知△ABC为等边三角形,D是△ABC内一点

延长AD至E交BC于E∵△ABC为等边三角形∴AB=AC=BC=1在△ABD与△ACD中,AB=ACBD=CDAD=AD∴△ABD全等于△ACD(SSS)∴∠BAD=∠CAD=二分之一∠BAC=30°

如图,△ABC是等边三角形,D,E,F分别是各边上的一点,且AD=BE=CF求证△DEF是等边三角形

再答:�����再答:��֤��再问:����ѧ����再答:����再答:����������׶���再问:��ģ��һ����߰��ⲻ�ᣬ����������再答:�һ�Ļ��һ�����再答:�

如图所示,已知△ABC是等边三角形,D是BC延长线上一点,CE平分∠ACD,CE=BD.求证:△ADE是等边三角形

证明△ABD和△ACE全等AB=AC,BD=CE∠B=∠ACE可以得出AD=AE∠BAD=∠CAE进一步得出∠BAC=∠DAE=60所以△ADE为等边三角形

如图所示,已知△ABC是等边三角形,D是BC延长线上一点,CE平分∠ACD,CE=BD.求证:△ADE是等边三角形.

由于△ABC和△GCF均为等边三角形由BC=AC∠BCA=∠DCE=60°DC=EC得△BDC全等于△AECDC=CE又∠DCE=60°得△DCE是等边三角形