根号下X的平方减1分之1 求积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:20:15
∵x=√3-1∴x/(x-1)=(√3-1)/(√3-2)=(√3-1)(√3+2)/(3-4)=-(3-2+√3)=-(√3+1)∴x²/(x²-2x+1)=x²/(x
=3/64-3/8=-21/64再问:不对啊再答:=1/3(1+3^1/2)^3-1/3(1+(1/3)^1/2)^3
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
∫xdx/√(1-x²)=(1/2)∫2xdx/√(1-x²)=(1/2)∫dx²/√(1-x²)=-(1/2)∫d(-x²)/√(1-x²
方法一:方法二:再问:太感谢了,真详细╮(╯▽╰)╭
积分符号我用f代替了令t=根号(1+e^x)那么x=In(t^2-1)所以dx=dIn(t^2-1)=2t/(t^2-1)dt那么原积分可以写成f2dt/(t^2-1)=2f1/t^2-1dt=ln{
∫x√(1-x^2)dx=-1/2∫√(1-x^2)d(-x^2)=-1/3(1-x^2)^(3/2)
设x=sint,dx=costdt,(以下省略积分符号)原式=[(sint)^2/cost]costdt=(sint)^2dt=(1-cos2t)/2*dt=1/2[dt-cos2tdt)=1/2t-
直接由积分表得:∫√(1+x^2)dx=x/2(√(1+x^2)+0.5ln(x+√(1+x^2))+c再问:考试时候没有积分表啊再答:那我也没法了,谁有那么多的时间去背积分表啊!
再问:非常感谢您的指点。
令x=sinu,则:u=arcsinx,dx=cosudu.∫[(1+x^2)/√(1-x^2)]dx=∫{[1+(sinu)^2]/√[1-(sinu)^2]}cosudu=∫[1+(sinu)^2
F(x)=∫ydx=∫√(1-x^2)dx令x=sint,则√(1-x^2)=cost,dx=costdt,从而∫√(1-x^2)dx=∫cost^2dt=∫[(1+cos2t)/2]dt=∫(1/2
真数1/(x-1)>0x-1>0x>1根号下则log1/2[1/(x-1)]>=01/(x-1)0所以1=2且x²-x>=0x(x-1)>=0x=1所以x>=2定义域[2,+∞)再问:不好意
∫(-2→-1)√(3-4x-x^2)dx=∫(-2→-1)√[7-(x+2)^2]dxx+2=√7sinθ、dx=√7cosθdθθ∈[0,arcsin(1/√7)]=∫(√7cosθ)(√7cos
再问:亲,你在第一步就化错了吧再答:
用三角替换.再问:怎么做?求详细解答再答:设x=sina,那么后面的就可以把根号去掉了。后积分区域变成pai/2-pai/2,积分式为(sina立方*cosa-cosa)da这不就好做了嘛。后面分开来
替换x=sect,tant=根号(sec^2t-1)=根号(x^2-1)dx=secttant积分=积分sect*根号(sec^2t-1)secttantdt=积分sect*根号(tan^2t)sec