根号下x方减1的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:26:25
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
∫xdx/√(1-x²)=(1/2)∫2xdx/√(1-x²)=(1/2)∫dx²/√(1-x²)=-(1/2)∫d(-x²)/√(1-x²
方法一:方法二:再问:太感谢了,真详细╮(╯▽╰)╭
令根号下1+e^x=t则有1+e^x=t^2dx=[2t/(t^2-1)]dt原式=2∫t^2/(t^2-1)dt=2∫1+1/(t^2-1)dt=2t+ln|(t-1)/(t+1)|+c再问:1/(
定积分的上下限呢?如果是不定积分,用第二类换元法,x=2√2*sinx,可以变成8∫(cosx)^2dx,再用倍角公式化成4∫cos2x+1dx=2sin2x+4x+C
积分(1-根号x^3)dx方法:变量替换,设:根号x=t,这样,dx=d(t^2)=2tdt,然后就是:积分(1-t^3)*2tdt,很容易的.积分根号[x(x-2)]dx=积分根号[(x-1)^2-
根号下(1+x^-4)dx的积分=x-[x^(-3)]/3+c
∫根号(1+1/x^2)dx=∫根号(x^2+1)/xdx令t=根号(x^2+1)x=根号(t^2-1)dx=t/根号(t^2-1)dt=∫t/根号(t^2-1)*t/根号(t^2-1)dt=∫t^2
∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+
∫(0,1)√xdx=(2/3)x^(3/2)|(0,1)=2x/3-0=2x/3
1+e^x=t^2x=ln(t²-1)dx/dt=2t/(t^2-1)
既要换元,又要分部,还涉循环积分.初学者有难度.
利用(a-b)*(a+b)=a²-b²,分子分母同时乘以a+b,其中a=√(1+x²),b=√(x²-2x)原式=lim(x->+∞)(1+2x)/[√(1+x
答:设t=√[x/(x+1)]t^2=(x+1-1)/(x+1)=1-1/(x+1)1/(x+1)=1-t^2x+1=1/(1-t^2)x=-1+1/[(1-t)(1+t)]x=-1+(1/2)*[1
很显然楼上看错了题目呢,并不是∫x/√(x+1)dx∫√x/√(x+1)dx=∫2√xd√(x+1)由分部积分法=2√x*√(x+1)-∫2√(x+1)d√x对于∫2√(x+1)d√x,令√x=t,则
∫x/√(1-x^2)dx=1/2∫1/√(1-x^2)dx^2=-1/2∫1/√(1-x^2)d(1-x^2)=-√(1-x^2)+c
x^2+2x+lnx把3,2分别带进去想减
其中的∫(secθ)³dθ,请参见下图:其中的∫(secθ)dθ,请参见下图:或:
用三角替换.再问:怎么做?求详细解答再答:设x=sina,那么后面的就可以把根号去掉了。后积分区域变成pai/2-pai/2,积分式为(sina立方*cosa-cosa)da这不就好做了嘛。后面分开来