根号下x²-9 x的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:03:26
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
令根号下1+e^x=t则有1+e^x=t^2dx=[2t/(t^2-1)]dt原式=2∫t^2/(t^2-1)dt=2∫1+1/(t^2-1)dt=2t+ln|(t-1)/(t+1)|+c再问:1/(
定积分的上下限呢?如果是不定积分,用第二类换元法,x=2√2*sinx,可以变成8∫(cosx)^2dx,再用倍角公式化成4∫cos2x+1dx=2sin2x+4x+C
根号下(1+x^-4)dx的积分=x-[x^(-3)]/3+c
令x=3sect,则dx=3sect*tantdt于是∫√(x²-9)/xdx=∫(3tant*3*tant*sect)/3sectdt=∫3tan²tdt=∫(3tan²
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
令x=asin(t)就做出来了...答案是-根号下a平方-x平方再问:能详细写下积分过程吗?谢谢。再答:换元积分,微积分里有的~
∫根号(1+1/x^2)dx=∫根号(x^2+1)/xdx令t=根号(x^2+1)x=根号(t^2-1)dx=t/根号(t^2-1)dt=∫t/根号(t^2-1)*t/根号(t^2-1)dt=∫t^2
再牛的人也没用,这个没有显式表达式,我用数学符号软件MAPLE求的,中间那个英文还不知道是什么意思
∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+
∫(0,1)√xdx=(2/3)x^(3/2)|(0,1)=2x/3-0=2x/3
1+e^x=t^2x=ln(t²-1)dx/dt=2t/(t^2-1)
既要换元,又要分部,还涉循环积分.初学者有难度.
答:设t=√[x/(x+1)]t^2=(x+1-1)/(x+1)=1-1/(x+1)1/(x+1)=1-t^2x+1=1/(1-t^2)x=-1+1/[(1-t)(1+t)]x=-1+(1/2)*[1
很显然楼上看错了题目呢,并不是∫x/√(x+1)dx∫√x/√(x+1)dx=∫2√xd√(x+1)由分部积分法=2√x*√(x+1)-∫2√(x+1)d√x对于∫2√(x+1)d√x,令√x=t,则
其中的∫(secθ)³dθ,请参见下图:其中的∫(secθ)dθ,请参见下图:或: