根号下5 4x的平方积分怎么算
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:00:27
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
∫x√(1-x^2)dx=-1/2∫√(1-x^2)d(-x^2)=-1/3(1-x^2)^(3/2)
设x=sint,dx=costdt,(以下省略积分符号)原式=[(sint)^2/cost]costdt=(sint)^2dt=(1-cos2t)/2*dt=1/2[dt-cos2tdt)=1/2t-
定积分的上下限呢?如果是不定积分,用第二类换元法,x=2√2*sinx,可以变成8∫(cosx)^2dx,再用倍角公式化成4∫cos2x+1dx=2sin2x+4x+C
图片解答已经传上,请稍等.暂时情别追问,一追问就得重传.图片显示后,可以尽情追问.
直接由积分表得:∫√(1+x^2)dx=x/2(√(1+x^2)+0.5ln(x+√(1+x^2))+c再问:考试时候没有积分表啊再答:那我也没法了,谁有那么多的时间去背积分表啊!
令x=tanα,则:√(1+x^2)=√[1+(tanα)^2]=1/cosα, dx=[1/(cosα)^2]dα.sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(t
令x=asin(t)就做出来了...答案是-根号下a平方-x平方再问:能详细写下积分过程吗?谢谢。再答:换元积分,微积分里有的~
令x=sinu,则:u=arcsinx,dx=cosudu.∫[(1+x^2)/√(1-x^2)]dx=∫{[1+(sinu)^2]/√[1-(sinu)^2]}cosudu=∫[1+(sinu)^2
这个东西挺麻烦的,耐心看完设I=∫√(x²+1)dx则I=x√(x²+1)-∫xd[√(x²+1)]=x√(x²+1)-∫[x²/√(x²+
看图片.
就设x=atant,a²+x²=a²sec²tdx=asec²tdt根号(a²+x²)dx=a²sec³tdt
很显然楼上看错了题目呢,并不是∫x/√(x+1)dx∫√x/√(x+1)dx=∫2√xd√(x+1)由分部积分法=2√x*√(x+1)-∫2√(x+1)d√x对于∫2√(x+1)d√x,令√x=t,则
这个有公式的.具体发图上来..
ʃ(-1,1)√x²dx=ʃ(-1,1)|x|dx=2ʃ(0,1)|x|dx(|x|是[-1,1]上的偶函数呀)=2ʃ(0,1)xdx=2*1/2*x
根号(x的平方+4)的积分怎么求∫[√(x²+4)]dx=2∫[√(x/2)²+1]dx令x/2=tanu,则x=2tanu,dx=2du/cos²u=2sec²
替换x=tant,-pi/2