根号下1 tanx-根号下1 sinx再÷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:22:04
分子有理化lim(x→0)[√(1+tanx)-√(1-tanx)]/sinx=lim(x→0)[√(1+tanx)-√(1-tanx)][√(1+tanx)+√(1-tanx)]/{sinx[√(1
∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^
lim(√(1+tanx)-√(1+sinx))/(xln(1+x)-x^2)=lim(tanx-sinx)/(xln(1+x)-x^2)(√(1+tanx)+√(1+sinx))=(1/2)lim(
还有什么不懂的可以问我,数学公式太难打了.
用无穷小的代换(根号下(1+tanx)-根号下(1+sinx))/x^3=[1/2tanx-1/2sinx]/x^3=1/2(tanx-sinx)/x^3=1/2*1/2x^3/x^3=1/4用到的无
lim(x→0)(sinx-tanx)/{[3√(1+x^2)-1]*[√(1+sinx)-1]}用等价无穷小化简:(n√x+1)-1x/nsinx~x1-cosx~x²/2还要把sinx-
后面你会了吧再答:再答:再答:
因为lg(tanx-1)的x的定义域为:tanx-1>0即tanx>1,所以kπ+π/4
lim(x→0)[√(1+tanx)-√(1+sinx)]/ln(1+x^3)=lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^3)=lim(x→0)[√(1+tanx)-√(1+s
需满足tanx-1>=0即tanx>=1即定义域为:[kπ+π/4,kπ+π/2),,k为任意整数.
相当于求丨sinx丨/sinx+丨cosx丨/cosx-丨tanx丨/tanx.对X分情况吧,当X位于第一二三四象限是分别是:1,1,-3,1可知为集合-3,1
当x→0时tanx→0sinx→0∴lim(x→0)1/{根号下(1+tanx)+根号下(1+sinx)}=1/(1+1)=1/2再问:问一下,根号下(1+tanx)+根号下(1+sinx)=2,这是
cosx=1/2(√(1+sinx)-√(1-sinx))是的.两边平方是扩大了方程的根的取值范围,所以你求出来之后的x也是扩大了的.最后得将其带入到原来的方程里面去验证的,比如上面的:平方后cos^
tanx+1≥0tanx≥-11-tanx>0tanx<1∴tanx∈[-1,1)x∈[-π/4+kπ,π/4+kπ)(k∈Z)
=-sinx/(1-cosx)*√[(1/cosx-1)/(1/cosx+1)]]=-sinx/(1-cosx)*[(1-cosx)/|sinx|]sinx>0=-1sinx再问:化简,不用求值再答:
要求1-tanx>=0,所以要求tanx
y=tanx*√(1-x²)那么y'=(tanx)'*√(1-x²)+tanx*[√(1-x²)]'显然(tanx)'=1/cos²x[√(1-x²)
y=√sinx+√(1-tanx)sinx≥0且1-tanx≥02kπ≤x≤2kπ+π且-1/2π+kπ<x≤kπ+1/4π(k∈Z)∴2kπ≤x≤2kπ+1/4π再问:1-tanx≥0的取值范围是:
y=根号下(sinx)+根号下(1-tanx)sinx≥0得2kπ≤x≤2kπ+πk∈z1-tanx≥0tanx≤1kπ-π/2