根号n 1-根号n的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:32:41
这个简单,分子有理化后可由于 0据夹逼定理,……
随着n无限增大,n(n-1)无限增大,整个分母部份也随之无限增大,所以整个分数无限减小并趋近于0,所以随着n无限增大趋于正无穷,极限应该为0
不管正整数x等于几,n次根号x都等于1,所以n次根号2+n次根号3+...+n次根号101的极限等于100啊~
(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2
n*(根号n-根号(n+1))首先因为根号n<根号(n+1),根号n-根号(n+1)<0其次因为(n*根号(n+1))²-(n*根号n)²=(n+1)n²-n*n
先取对数,求极限,结果再求指数函数lim(n->∞)n*ln[√(n²+n)﹣√(n²-n)]=lim(n->∞)n*ln{2n/[√(n²+n)+√(n²-n
分子分母乘以(根号(n+1)+根号n)原式=根号n/(根号(n+1)+根号n)=1/(1+根号((n+1)/n))n趋向无穷时原式为1/2
a(n)=[(n+2)^(1/2)-(n+1)^(1/2)]-[(n+1)^(1/2)-n^(1/2)],s(n)=a(1)+a(2)+...+a(n-1)+a(n)=[3^(1/2)-2^(1/2)
√(n+1)-√n=[√(n+1)-√n]*[√(n+1)+√n]/[√(n+1)+√n]=1/[√(n+1)+√n]那么显然在n趋于无穷大的时候,分母[√(n+1)+√n]趋于无穷大,所以√(n+1
lim(n->∞)narctan(nx)/√(n^2+n)=lim(n->∞)arctan(nx)/√(1+1/n)=π/2
lim(e^(1/n))=lim(e^(1/∞))=lim(e^0)=1
题目没抄错的话你认为结果是多少呢?不明显是无穷大的吗,这点数学头脑都没有?!个人认为原题应该是求:lim(n→∞)根号n+1-根号n的极限是多少这样的话,给(根号n+1-根号n)乘以(根号n+1+根号
做个分子有理化原式=[√(n+3)-√n][√(n+3)+√n]/[√(n+3)+√n]=3/[√(n+3)+√n]因此极限为0.希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回
先告诉你答案是2/3.我认为题目是根号的和除以n倍根号n,不然极限是0,没什么意义.详细解法如图,我花了好多时间做出来的.多给点分吧.
我开始做的也是收敛,纠结了,不过换种思路就是列出几项,你会发现这个式子和等于(根下(n+1)-根下1),这个和s极限为无穷,结果是发散再问:是啊,但是用比值判别法貌似又是收敛的……
lim[√(n+1)-√n]=lim{1/[√(n+1)+√n]}=0再问:我就是不懂为什么1/[√(n+1)+√n]}=0就等于0了?!再答:|{1/[√(n+1)+√n]}|
为便于书写,还是作个变量代换吧,令x=三次根号(n+1),y=三次根号(n),则x^3-y^3=(n+1)-n=1,即(x-y)(x^2+xy+y^2)=1,所以,x-y=1/(x^2+xy+y^2)
n→∞时,√(4n^2+n)→+∞
解limn→无穷(2)^(1/n)=2^0=1