dy dx=x y-xy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:53:18
dy dx=x y-xy
求由方程xy=ex+y所确定的隐函数的导数dydx

方程两边求关x的导数ddx(xy)=(y+xdydx);     ddxex+y=ex+y(1+dydx);所以有  (y+xdy

先化简,再求值 ⒈2(Xy+Xy)-3(Xy-xy)-4Xy,其中X=1,y=-1

1.2(Xy+Xy)-3(Xy-xy)-4Xy=2*2xy-0-4xy=4xy-4xy=02.1/2ab-5aC-(3acb)+(3aC-4aC)=1/2ab-5ac-3acb-ac=1/2ab-6a

(-3x^y+2xy)-( )=4x^+xy

(-3x^y+2xy)-(4x^+xy)=-3x^y+2xy-4x^-xy=-3x^y+xy-4x^所以填上-3x^y+xy-4x^

X-Y=5,XY=3.XY是多少?

Y=X-5XY=X²-5X=3X²-5X-3=0X=(5±√37)/2Y=X-5X=(5-√37)/2,Y=(-5-√37)/2X=(5+√37)/2,Y=(-5+√37)/2

z= xy ln(xy) 求全微分dz

dz=d(xyln(xy))=xyd(ln(xy))+ln(xy)d(xy)=xyd(xy)/(xy)+ln(xy)d(xy)=d(xy)+ln(xy)d(xy)=(1+ln(xy))d(xy)=(1

xy'=y+xy的

xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs

当x=3,y=3分之1时,求代数出3xy-[2xy-2(xy-2分之3xy)+xy]+3xy的值

3xy-[2xy-2(xy-2分之3xy)+xy]+3xy=6xy-[2xy-2xy+3xy+xy)=6xy-4xy=2xy=2×3×3分之1=2

z=sin(xy)+cos^2(xy)一阶偏导数

∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(

已知:xy+x=-1,xy-y=-2.

(1)∵xy+x=-1①,xy-y=-2②,∴①-②得x+y=1;(2)先把xy+x=-1,xy-y=-2的值代入代数式,得原式=-x-[2y-1+3x]+2[x+4]=-x-2y+1-3x+2x+8

化简:xy分之3x^2+2xy-xy分之2x^2-xy=

(3x^2+2xy)/xy-(2x^2-xy)/xy=(3x^2+2xy-2x^2+xy)/xy=(x^2+3xy)/xy=x(x+3y)/xy=(x+3y)/y

二元二次方程求解xy^2=23400xy=1800

xy^2=xy×y=23400把已知的xy=1800代入上面的公式,求得y=13,再把y=13代入xy=1800,求得x=1800/13

xy+x=20 xy+y=18

由题意得:X=Y+2.那么Y(Y+2)+Y+2=20(Y+2)×(Y+1)=20所以y=3那么x=5可待入xy+y=18就不对了.(Y+2)×(Y+1)=20,Y应该是-6,X是-4,答案就对了.X=

x²+xy=12 xy+y²=13

两式相加得到x+y=5,相减得y-x=1/5,故x=12/5,y=13/5xy=156/25,因为要求的都是正数,而且xy同正负,所以只考虑x,y正数即可故x²+y²=(x+y)^

解方程组x2+xy=12 xy+y2=4

x^2+xy=12xy+y^2=4因式分解下,得x(x+y)=12.y(x+y)=4两个方程相加,得(x+y)^2=16所以x+y=±4当x+y=4时,代入x(x+y)=12.y(x+y)=4解得x=

X+y=3 xy=-5 Xy=?

X+y=3xy=-5X-y=?(x-y)^2=(X+y)^2-4xy=9+20=29则x-y=±根号29

-xy+xy等于多少?

得0=(-X+X)y=0×y=0

解方程组xy+x=16&xy-x=8

由xy+x=16,得x=16/(y+1)代入xy-x=8,得16y/(y+1)-16/(y+1)=8=>16(y-1)/(y+1)=8=>(y-1)/(y+1)=1/2移项,通分得y-3/2(y+1)

xy*yx=2268

即(10x+y)*(10y+x)=2268101xy+10x²+10y²=2268因为后面的10x²+10y²只可能是整十的数,所以2268中的个位8要靠101

设函数y=y(x)由方程ex+y+cos(xy)=0确定,则dydx

在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).