根号1-x除以1 x dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:01:03
∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^
原式=∫(0→3)(x+1-1)/(x+1)dx=∫(0→3)dx-∫(0→3)dx/(x+1)=x|(0→3)-∫(0→3)d(x+1)/(x+1)=x|(0→3)-ln|x+1||(0→3)=3-
用分部积分法就可以很快得出答案,1.∫xdx/(1+x*x*x*x)=x*x/(1+x*x*x*x)-∫x/(1+x*x*x*x)dx=x*x/(1+x*x*x*x)-1/2∫1/(1+x*x*x*x
(1)令x=sint,因x属于(-1,2),故t在(-pi/2,pi/2)内,且dx=costdt∫x^2/根号(1-x^2)dx=∫(sint)^2/cost×costdt=∫(sint)^2dt=
∫xcos(3x)dx=xsin(3x)/3-1/3∫sin(3x)dx(应用分部积分法)=xsin(3x)/3+cos(3x)/9+C(C是积分常数)∫xln(x+1)dx=x²ln(x+
∫(0->1)x^2/(1+x)dx=∫(0->1)(x^2-1+1)/(1+x)dx=∫(0->1)(x-1)dx+∫(0->1)1/(1+x)dx=(x^2/2-x)|(0->1)+ln(x+1)
由题意可得:先求∫√(x^2-1)/xdx的不定积分令√(x^2-1)=t,又上下限均大于0所以x=√(t^2+1),dx=t/√(t^2+1)dt所以∫√(x^2-1)/xdx=∫t/√(t^2+1
用分步积分法就可以做出来了∫arctan1/xdx=xarctan(1/x)-∫xdarctan1/x=xarctan(1/x)-∫x/[1+(1/x)^2]*(-1/x^2)dx=xarctan(1
∫lnx/√xdx=∫lnx*2/(2√x)dx=2∫lnxd(√x)=2√xlnx-2∫√xd(lnx)、分部积分法=2√xlnx-2∫√x*1/xdx=2√xlnx-2∫1/√xdx=2√xlnx
如果题目是:∫(1,4)[e^(根号x)/根号x]dx则可以:原式=∫(1,4)[2*e^(根号x)]d(根号x)=2*e^(根号x)|(1,4)=2*e^2-2*e=2e²-2e
(1)∫(inx)平方1/xdx=∫(lnx)平方d(lnx)=1/3(lnx)立方(2)y=1-x/根号xy’=(-1*根号x-1/2x(-1/2次方)*(1-x))/x这个在知道上面打蛮麻烦的就用
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
第一题;∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C符号太繁琐,带入符号和数字即可.第二题用三角代换,x=tant,t属于(-PI/4,PI/4)
如果有用及时采纳再问:问下为什么前面要加负号再答:加符号就对换了积分的上下限。再问:哦,谢谢
(-xdx)/根号下(1-x^2)=(1-x^2)^(-1/2)(-xdx)=(1/2)*(1-x^2)^(-1/2)(-2xdx)=(1/2)*(1-x^2)^(-1/2)d(1-x^2)积分,得(
√x=tx=t²dx=2tdt∫(0-->1)2te^tdt=2∫(0-->1)tde^t=2te^t-2∫e^tdt=2te^t-2e^t(0-->1)=2e-2e-(-2)=2
∫根号X内根号xdx=∫x^(1/2+1/4)dx=∫x^3/4dx=4/7x^(7/4)+c