根号1-x^2除以x^2的积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:46:59
根号1-x^2除以x^2的积分
x除以根号下1-x平方dx (0到1)的定积分

xdx/(1-x*x)^(1/2)=-1/2*d(1-x*x)/(1-x*x)^(1/2)再问:我也是这样算的最后是负一但答案是1

根号下1+x的2的积分怎么求

求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s

不定积分 积分号 X除以根号下1减x的平方!

∫xdx/√(1-x²)=(1/2)∫2xdx/√(1-x²)=(1/2)∫dx²/√(1-x²)=-(1/2)∫d(-x²)/√(1-x²

dx/x(2+根号x)的积分

先进行换元,令根号x=t再答:

求积分∫ x的平方除以根号下1-x的平方 dx

设x=sint,dx=costdt,(以下省略积分符号)原式=[(sint)^2/cost]costdt=(sint)^2dt=(1-cos2t)/2*dt=1/2[dt-cos2tdt)=1/2t-

定积分的一道问题,积分号 1到0 根号(2x-x^2)

原式=∫(0→1)√(1-(x-1)^2)d(x-1)令x-1=sint则原式=∫(-π/2→0)cost*costdt=∫(-π/2→0)(cos(2t)+1)/2dt=1/4∫(-π/2→0)co

求不定积分:积分号(1-根号X)的三次方dx;积分号根号X*(x-2);多谢!

积分(1-根号x^3)dx方法:变量替换,设:根号x=t,这样,dx=d(t^2)=2tdt,然后就是:积分(1-t^3)*2tdt,很容易的.积分根号[x(x-2)]dx=积分根号[(x-1)^2-

根号x除以(1+x的平方)的积分

二分之根号2乘以arctan[(x-1)/根号(2x)]+四分之根号2乘以lnabs[(x+根号2x+1)/(x-2x+1)]+C

积分ln(x+根号1+x^2)dx的不定积分

∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1

积分号1除以根号(x^2-1) dx 注意,不是arcsinx

令x=1/cost,则√(x^2-1)=tant=sint/cost,dx=-sint/(cost)^2∫1/√(x^2-1)dx=∫(cost/sint)·[-sint/(cost)^2]dt=∫1

x+2/根号下x+1的积分

∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+

当x趋向无穷时,(arctant)^2在【0,x】的定积分除以根号下(x^2+1)

由洛必达法则,原式=lim(x趋于无穷)(arctanx)^2/(x/√(x^2+1))=lim√(x^2+1)/x*lim(arctanx)^2=1*(π/2)^2=π^2/4

根号下1+ x^2的积分

既要换元,又要分部,还涉循环积分.初学者有难度.

积分dx/根号下(1-x^2)

原式=∫1/(1-x)(1+x)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln|1-x|+ln|1+x|]+c=1/2ln|(1+x)/(1-x)|+c啊,原来有根号啊应该是ar

几道基础的积分题∫(X+1/(√x))(3√x) dx (X加上1除以根号X的和,乘以X的立方根)∫(5^(2x+2))

1、∫(x+1/(√x))(3√x)dx=∫(x+x^(-1/2))x^(1/3)dx=∫x·x^(1/3)dx+∫x^(-1/2)·x^(1/3)dx=∫x^(4/3)dx+∫x^(-1/6)dx=

根号下x除以根号下x+1的积分怎么求?

很显然楼上看错了题目呢,并不是∫x/√(x+1)dx∫√x/√(x+1)dx=∫2√xd√(x+1)由分部积分法=2√x*√(x+1)-∫2√(x+1)d√x对于∫2√(x+1)d√x,令√x=t,则

x∧2/根号(1-x∧2)的积分

设x=sint,则dx=cost*dt∫x^2/√(1-x^2)*dx=∫(sint)^2*(cost)*dt/cost=∫(sint)^2*dt=1/2*∫2(sint)^2*dt=1/2*∫(1-