dx dy=1 y2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:10:33
用极坐标来解吧,令x=r*cosθ,y=r*sinθ那么显然√(x²+y²)=r,由x²+y²≤2x可以得到r²≤2r*cosθ即r≤2cosθ故r的
T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤
pi*(pi/2-1)
∫∫(根号x+y)dxdy14x=∫dx∫(根号x+y)dy0x1|4x=∫(2/3)(x+y)^(3/2)|dx0|x1=∫(2/3)(x+4x)^(3/2)-(2/3)(x+x)^(3/2)dx0
【数学之美】团队为你解答,如果解决问题请采纳.
y=x与y=x^3在第一象限的交点为(1,1)该积分区域既是X-型的,又是Y-型的X-型:∫0到1∫x^3到x(e^x2)dydx=∫0到1(e^x2)(x-x^3)dx=1/2*[(2-x^2)*e
1∫∫e^-y2(即系e的-y^2次方),D由X=1,Y=1,X=Y所围成X=1,Y=1,X=Y不能围成区域,请楼主再检查一下.2∫∫(根号X)dxdy,D={(x,y)x^2+y^2≤x}∫∫(根号
我来回答吧:1),因为D是矩形区域,0
被积函数f(x,y)呢?如果认定被积函数f(x,y)=1,那么二重积分所表示的几何意义就是:以圆(x-1)²+y²=1为底,高度为1的圆柱体的体积.因为积分区域D:x²+
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
这个是最简单的二重积分,因为x,y相互取值上是独立的(没有影响).因此只需要分别对x,y积分就行了.比如先积x,就是(x+y)dx的积分在(0,1)上的值,把y看成常数.为x^2/2+xy,取x=1,
这道题用极坐标变换便不好做,因为积分范围真的是不好确定. 应该是用积分变化.令y=y,和z=y-x,这时有范围a再问:这个方法懂的。是正确答案,谢谢啦只是老师要求用极坐标做啊……再答:极坐标的不好写
实数范围:无复数范围:(x+yi)(x-yi)-(x+yi)(x-yi)
∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/
max(xy,1)=xy(xy≥1),1(xy