dw检验随机项的一阶自相关性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:06:47
楼主为什么一定要AR(2)呢?...AR(1)用广义差分就可以了...经济意义一般AR(1)...楼主改AR(1)试试...如果还不行...看看是不是有别的问题...改模型设定看看...或者改成大样本
DW检验用于检验随机误差项具有一阶自回归形式的序列相关问题,也是就自相关检验D-W检验:德宾—沃森统计量(D-W统计量)是检验模型是否存在自相关的一种简单有效的方法,其公式为:D-W=∑(Et-Et-
在spss中打开要处理的数据,然后点击菜单栏中的“分析”,下拉菜单中点“回归分析”,在回归分析的下拉菜单中点击“线性”,出现“线性回归”窗口,然后将要分析的变量和自变量拉入指定位置.点击统计.出现“线
我只会简单的你试试我这个方法.首先你的样本容量是多少,最后模型的回归结果中解释变量有几个,然后翻书后的表查一下德宾奥森d统计量.比如样本容量为17,解释变量为3个,即n=17,k=3,在a=0.05显
DW检验也是就自相关检验,一般多适用于变量间相互独立且样本容量较小的分析.0
图片可以设置为背景,用marquee标签设置滚动效果
可以的,自相关本身就是检验一个序列自身(不同时期间)的相关程度.建模后所做的自相关检验,主要是针对残差序列进行DW检验,从原理上说用直接用来检验原序列也是可以的.但其实这样式错的,这涉及到非参的问题,
DW检验用于检验随机误差项具有一阶自回归形式的序列相关问题,也是就自相关检验0
先进性复共线性检验,如果变量之间复共线性特别大,那么进行岭回归和主成分回归,可以减少复共线性,岭回归是对变量采取了二范数约束,所以最后会压缩变量的系数,从而达到减小复共线性的目的,另外这个方法适合于p
把各种情况分成几个等级,然后用秩相关分析方法,计算相关系数.再问:都用秩相关分析吗再答:是的,当然,后两列间可用PEARSON相关系数
Durbin-Watsonstat
DW在模型汇总里面,不是这个表格再问:那怎么做模型汇总呢??
首先,您用不同的测量方法,是1方法测量了A,2方法测量了B吗?如果是这样,就无法进行假设检验,因为测量方法也是一个因子了(变量).
滞后期p一般是1个1个往上加每加一个就用t,F统计检验看看各个系数然后断定是否继续加这样
建立出模型来,然后点view》residualtest》seriescorrelationLMtest默认是做二阶差分,出来的结果如果obs和resid(-2)都显著了那重复上面步骤做三阶的,直到ob
首先,要判断您输入输出的数据类型,是连续的还是离散的;连续数据是否是正态的;两样本是否方差齐性等等.根据这个结果,确定选择适合的假设检验,然后就可以在统计>基本统计或统计>方差分析或统计>非参数或统计
DW近似等于2(1-r^2)所以2×(1-r^2)=0.6r^2=0.7估计你问的应该是这个把.
高中选修2-3附录中有
不是.相关性检验是两个或多个变量间的相关问题,而自相关主要发生在时间序列分析中,考虑的是变量在不同时间段的相关性.
直接看结果的DW值判断是否存在一阶自相关,你发的这个图是判断时间序列的稳定性的,从图上来看是一组稳定的时间序列.