某曲线绕z轴旋转
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:38:04
此题并不难:任取曲面上一点,则它的纵坐标不变,到Y轴的距离为原来的横坐标的绝对值.故y=x^2+z^2.另外呢,旋转后的曲线对于xz轴的位置是等价的,故表达式中xz是对称的~也可以得出方程
这是旋转曲面f(y,z)=0所以旋转曲面是f(+-√(x^2+y^2),z)=0所以曲面是x^2+y^2=(z^2+1)^2
旋转曲面方程为:x²+y²=2z,与平面z=4交线为:x²+y²=8∫∫∫(x²+y²)dv=∫∫∫r²*rdzdrdθ=∫[0→
题目有问题.请更正!x^2+z^2=3y=1是一个圆,y轴垂直它所在平面,旋转了不是曲面
[正负根号下(X平方+Y平方)]Z=4(X^2+Y^2)Z^2=16即为曲线xz=4,y=0绕z轴旋转的曲面方程规律:绕那个轴,那个轴对应的变量不变,然后把剩余的变量换成正负根号下两个变量的平方和即可
首先,把z-x面上曲线的方程给出来;然后,根据此方程求出绕z轴旋转所得曲面的方程;最后,据曲面方程作图.楼主,给条z-x面上曲线的方程,就可让你看看你所需要的曲面.再问:关键问题是如何将方程做z轴的旋
联立方程x^2-2y^2+z=2与z=0,可解得xoy面上曲线方程x^2-2y^2=2.接着令x=(+或-)(x^2+z^2)^(1/2),然后解得方程x^2+z^2-2y^2=2
(t)=(0,sect,2tant),x=0,y=sect=1/cost,z=2tant=2sint/costz=2sint/cost=y*sint=y*√(1-1/y^2)=√(y^2-1),-y^
先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:
把z^2换成z^2十y^2即可
绕y轴旋转一周,y不变,另一个变量z^2换成x^2+z^2,即y^2/b^2-(x^2+z^2)/c^2=1为双叶双曲面.
z^3=5*√(x^2+y^2)再问:为什么不是z^6=25*(x^2+y^2)再答:其实看你怎么理解,这个图像是八个卦限都有的如果两边平方,开根号时加±即可再问:那答案究竟是z^3=5*√(x^2+
x^2-y^2+z^2=1设点M(a,b,c)在直线L上,点N为点M绕Z轴旋转所得的点,设N(x,y,z),则有z=c,x^2+y^2=a^2+b^2,于是有:总之消去a,b,c;就可以得到了
z=0,y=e^x是柱面y=e^x与xoy平面所交得到的曲线绕着x轴旋转一圈得到的是y=e^(±sqrt(x^2+z^2))再问:那绕y轴旋转的到的是啥?谢谢再答:前面那个错了,应该sqrt(y^2+
1.z=x^2+y^22.f(x,y)=[(2/x)^2-4(1/y)^2]*xy/83.f'x(x0,y0)=0且f'y(x0,y0)=0一、假设为X+kY+mZ=n,则有-3+2k+7m=n;2+
因为曲线绕z轴旋转,所以把x替换成根号(x平方+y平方)就行了.曲面方程是z=a倍根号(x平方+y平方),是个圆锥面.
您够可以的了,哈哈哈,比这个好积的想来不多了
绕x轴旋转,则旋转面上的每一个点(x,y,z)满足距z轴的距离为x^2+y^2的条件,满足该条件的点都在这个曲面上.你可以任意从该线上选一个点绕z轴旋转,从点推面